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DISCLAIMERS 

The findings in this  report are not to be construed as an official 
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documents. 
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curement operation,   the United States Government thereby incurs no 
responsibility nor any obligation whatsoever; and the fart that the Govern- 
ment may have formulated, furnished,  or in any way supplied the said 
drawings,   specifications,  or other data is not to be regarded by implica- 
tion or otherwise as in any manner licensing the holder or any other 
person or corporation,  or conveying any rights or permission,  to 
manufacture,  use,   or sell any patented invention that may in any way be 
related thereto. 

Trade names cited in this report do not constitute an official endorsement 
or approval of the use of such commercial hardware or software. 
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ABSTRACT 

The stress fields in the components of a unidirectional composite due 
to shrinkage and external loads are computed for 20 matrix/reinforcement 
combinations having various volumetric contents. Further, the load trans- 
missions between loaded and unloaded fibers are formulated as three- 
dimensional elasticity solutions. The instability problem of a composite 
is treated by both the static and the energy method, resulting in critical 
loads and buckling wavelengths which depend on material constants and 
geometries. The theoretical results are in good agreement with experiments, 
The work reported herein encompasses the following principal areas: 

-—■ 

1. Parametric studies (internal stresses and displacements com- 
puted for unidirectional composites composited of different 
combinations of matrices and reinforcements and different 
volumetric contents) 

2. Three-dimensional load transfer among loaded and unloaded 
fibers in a matrix 

3. Buckling of fibers in a matrix under axial load as an elas- 
ticity solution 

4. Buckling of fibers in a matrix under axial load, solved with 
the Ritz-Galerkin method 

5. Buckling of fibers in a matrix due to matrix shrinkage 

,\ 
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I 
FOREWORD 

This report was prepared by Whittaker Corporation, Narmco Research & 
Development Division, San Diego, California, under USAAVLABS Contract DA 44- 
177-AMC-441(T), entitled "investigation of Micromechanical Behavior of Fiber 
Reinforced Plastics," for the U. S. Array Aviation Materiel Laboratories, 
Fort Eustis, Virginia. The work was administered by Mr. R. P. McKinnon, 
Contracting Officer. 

This report covers the period from 14 June 1966 through 14 March 1967. 

Work on this project was carried out at Narmco under the overall direc- 
tion of Dr. Juan Haener. Principal investigators also include Messrs. Noel 
Ashbaugh, Chuen-Yuan Chia, and Ming-Yuan Feng. The program was 
administered by Mr. Boris Levenetz, Assistant Manager of Narmco's Engineering 
Department. 
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aij 

ali 

ij 

h 

components of stress tensor associated with coordinate 
directions as indicated by subscripts 

constants (i = 1,2,3) 

functions of p(i,j = 1,2,3) 

Airy's stress function 

TT 
defined by \|f = ^ - cp 

functions of p(i = 1,2,3) 

Superscripts: 

I,II fiber and matrix, respectively 

III unloaded fiber in load transfer problem 

( )' differentiation with respect to p 

Subscripts: 

i,j = 1,2,3 cylindrical coordinates r, 9, and z respectively 
x,y,z rectangular Cartesian coordinates 
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CILAJPTER 1 

INTRODUCTION 

The strength-to-weight efficiency of composite materials such as glass 
reinforced plastics has been demonstrated, through both theoretical and 
experimental investigations, to be superior to that of present-day metallic 
materials. While the application of these materials to airframe structures 
obviously would be beneficial., their practical utilization has been limited 
because reliable structural data have not yet been developed, and because 
the micromechanical influence of the composite constituents, along with 
their failure initiation and crack propagation, has not been fully under- 
stood. 

During the performance of Contract DA 44-177-AMC-208(T),* mathematical 
relationships were derived for a single fiber embedded in a resin cylinder 
for the case of static loading with general (mathematical) boundary con- 
ditions. These relationships were later extended>Wf to encompass the uni- 
directional multifiber composite subjected to forces of thermal contraction 
during the cure cycle, as well' as to external loads. 

This report describes a continuation of these efforts to define the 
mechanical behavior of fiber reinforced plastic composites in order that 
optimized materials and structural concepts can be developed for airframe 
components of US Army aircraft.  Work was devoted to the following areas: 

1. Internal stresses and displacements for unidirectional com- 
posites composed of different matrix/reinforcement combinations 
having different volumetric contents 

2. Three-dimensional load transfer among loaded and unloaded 
fibers in a matrix 

3. Buckling of fibers in a matrix under axial load as an elas- 
ticity solution 

4. Buckling of fibers in a matrix under axial load, solved with 
the Ritz-Galerkin method 

5. Buckling of fibers in a matrix due to matrix shrinkage 

* See USAAVLABS Technical Report 65-58. 

** Contract DA 44-177-AMC-320(T); USAAVLABS Technical Report 66-62. 
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CHAPTER 2 

SUMMARY OF RESULTS 

The three-dimensional analysis of a multifiber composite, such as that 
depicted in Figure 1, 

Figure 1. General Arrangement of a 
Multifiber Composite 

reveals stresses which may not be easily anticipated by simple reasoning. 
For instance, under an external compression load in the direction of the 
fibers, a tensile stress is generated perpendicular to the fiber at cp = 0° 
and becomes compressive at cp = 30°. For the tension case, these stresses 
are reversed.  Therefore, radial tension will exist in the bond regardless 
of the direction of the axial load.  For a 200,000-psi axial load, for 
example, these stresses are between 2000 and 4000* psi and, therefore, a 
weakening of the bond between fiber and resin occurs. 

One would expect the shrinkage stresses in the resin to be universally 
tensile; in the radial direction of the interface, however, these stresses 
are compressive where the fibers are closer together (cp ■ 0°), and are ten- 
sile where the fibers are further apart. 

One would expect the stress in the fiber direction due to resin shrink- 
age to be compressive.  However, in high-density fiber composites, part of 

* In a 64% glass reinforced epoxy composite. 
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this stress in the fiber is tensile due to Poisson's effect and the high 
radial compressive stress where the fibers were closer together.  This stress 
seems to increase stability in closely packed composites.  In an irregularly 
packed composite, it would tend to prebuckle the reinforcement. 

The instability solution indicates that the force required to buckle a 
fiber in a multifiber composite is much higher than expected based on 
simpler analyses.  One would be tempted to conclude that a densely packed 
composite fails under loads other than buckling. 

The buckling wavelength was also an outcome of this investigation.  It 
is remarkable that the wavelength obtained from an analysis with interfacial 
shear taken into account and an analysis where no interfacial shear was con- 
sidered yield very similar results.  From this, one might conclude that the 
buckling wavelength in a composite is independent of the interfacial shear. 
By comparing the two instability analyses, however, the buckling force was 
found to be very dependent on the interfacial shear. 

In general, the results of the parametric studies and the instability 
analysis complement each other, leading to the same conclusions. 

On the basis of the stresses computed during this program, it has 
been determined that a composite loaded in compression can have a higher 
fiber density than one loaded in tension. 

--  - ■■■ ■ - -      i-—— , ——^^^—,— 
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CHAPTER 3 

ANALYTICAL WORK 

PART I - PARAMETRIC STUDIES 

This study was made in order to investigate the stress, strain, and 
displacement fields in the fiber and matrix for composites under external 
and residual shrinkage loads.  The following parameters were varied: fiber 
and matrix modulus, fiber radius, fiber length, and fiber volumetric content. 
Combinations of the above parameters were picked in order to provide data on 
some presently used fiber and resin materials in composites.  From the 
analytical work, a computer program was written in order to obtain stress, 
strain, and displacement values in the composite. A discussion of the 
analytical work and the computer program is given in Appendix I. 

In general, the objectives were to predict the weaknesses in a compos- 
ite which would be created by residual shrinkage loads and external loading, 
and, if possible, to deduce simplified equations for the pertinent stress, 
strain, or displacement fields.  Figures 2 through 28 demonstrate that these 
curves could be fitted by fairly simple equations which are functions of, 
say, cp or z , but to include the stress level in such simplified equations 
and determine how it varies as a function of fiber and resin modulus and of 
Poisson's ratio-and fiber volumetric content proved to be very difficult. 

Table I shows the various parametric combinations which were chosen in 
the study.  The cases in Table I are comparable to boron/epoxy and E-glass/ 
epoxy composites under residual shrinkage and external loading. The elastic 
moduli of boron and E-glass were taken as 60 x 106psi and 10 x 106psi, 
respectively.  The epoxy modulus was varied for the E-glass case to obtain 
more pronounced effects on the field values than would be obtained for the 
boron epoxy cases. 

The length of the boron fibers were varied to see what effects would 
result from the long and short boron fibers . The values for the fiber 
volumetric content were picked to include typical composite values (V^ = 
64% and 70%) and high fiber density packing (V1 = 80%).  The radius of the 
E-glass fiber was varied because the E-glass fiber is made with various 
radii, while boron fiber has a typical radius of 2 mils.  Poisson's ratios 
for all cases were 0.2 for the fiber and 0.35 for the epoxy. 

Stress, strain, and displacement fields were obtained for each case. 
The most revealing effects, however, occurred in the stress fields.  Since 
it is also experimentally possible to measure the stresses, the study con- 
centrated on the changes in the stress field due to variation of the param- 
eters.  From the computer results, the maximum and minimum values of the 
six stresses occurred at the fiber-resin interface. The stresses shown in 
the figures are therefore the stress at the interface, r = a .  Thus, these 
stresses provide an indication of possible weaknesses and areas of failure 

in a composite. 

- - i in« ii ii —  
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Interface   for  Combinations  of 
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TABLE I 

CASES USED FOR THE PARAMETRIC STUDY 

Parameters 

Fiber General Fiber Fiber Epoxy 
Fiber 
Vol. 

Content, 
1 

Modulus, 
lO^psi 

State of 
Stress* 

Radius, 
10-3in. 

Length, 
in. 

Modulus, 
106psi 

60 S 2 3 0.38 64 

70 

80 

0.5 64 

10.0 

L 3 

70 

75 

80 

10 S 2.5 64 

70 

80 

1.0 64 

5.0 0.38 

L 2.5 

70 

f 80 

\ f 
5. 0 

1.0 

1.0 

64 

64 

* S = resin shrinkage which includes both cure shrinkage and 
differential thermal contraction« 

L = constant load applied at the ends on the resin. 
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Also,   the  computer  results  indicate that   the  stress  field away  from  the 
ends  of  the  fiber has   little  dependence on  the     z     coordinate.     In Figures  2 
through  7,   then,  the  stresses which are not  plotted as  functions of    zAt 
can be  considered as  constant  away  from the  fiber  ends with  respect to   the 
z     coordinate. 

Residual  Shrinkage Load 

From the cases  shown  in Table  I,   the  effects  of changing  the following 
parameters  can be  investigated  for  the residual  shrinkage  load.     In all 
these cases,   the  fiber  shrinkage was  zero and  the  resin  shrinkage was  1%. 

1.       Changes  in  the Combinations of Fibers  and Resin Modulus at    V    = 0.64 

The  three  combinations  of  fiber and resin moduli  are shown in Table  II. 

TABLE  II 

COMBINATIONS OF FIBER AND RESIN MODULI 

EI(106psi) 60 10 10 

EII(l(f psi) 0.38 
J 

0.38 1.0 

The change  from a  fiber modulus  of 60  x  IC^psi  to  10  x  10s psi did  not 
have much  effect on the  shrinkage stresses.     However,  changing  the resin 

modulus  from 0.38  X  10^ psi   to  1  x  lO^psi  increased  the stresses,  a-,-,   >  CT-I-T    J 
II ll 11 

and    Oyn   >  by a  factor of  1  divided by 0.38.     In other words,  when the ratio 
I 

of  resin  to fiber moduli  is  small,   the  change of  residual  stresses, o-, ■, , 
II II 

cr       ,   and CT99   ,   is  proportional  to the change in resin modulus.     See Fig- 
Ll I II I 

ures  2  and 3.    Three other  stresses, CT12   ,  (j-i«   >   an<i    CT??   J  
are  shown  in 

Figures 4 and 5. 

Figures 6  and  7  indicate a possible ±20% variation in  the axial re- 
sidual  stress  in both  the  resin  and  the fiber. 

2.       Changes  in  the Fiber Volumetric Content 

Figures 8 through 16 show the effects on the stresses due to fiber 
volumetric content. Figures 8 and 13 reveal a possible weakness in the 
composite.     The radial  stress  along  the  interface has  positive values.     If 
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this  stress were  large enough,   the  fiber-resin  interface  could  fail and  the 
composite effectiveness would be  lowered.     Also  the  shear stress at  the 
interface  (Figures   10 and   15)  would additionally  stress  the interface  bond. 
It   is  also  noted  that   increasing  the  fiber volumetric   content   in  general 
increases  the maximum stresses at  the interface. 

The fiber axial  stress,   shown  in Figure  12,   indicates  another  composite 
weakness.     Since  the residual  stress  in part of  the   fiber is  positive  for 
V-'- = 0.80  ,   the  fiber will   fail  at a  lower  stress   level when a  tensile  load 
is applied to  it.     From Figure  12,   the  residual  positive  stress will become 
even higher  for higher volumetric  content. 

3. Changes  in Fiber Radius  at    V-'-  = 0.64 

The  fiber radius was  doubled,   from 0.0025  to  0.005;  no effects within 
the accuracy of the calculations  could be seen  in   the  stress  fields. 

4. Changes  in  the Fiber Length at    V-'-  = 0.64 

The  fiber  length was  taken at  10 inches,  3  inches,   and 0.5   inch. 
There were no effects within  the accuracy of  the calculations on  the  stress 
field. 

Externally Applied Load 

From the  cases  shown  in Table I,   the effects  of  changing  the  following 
parameters  can  be investigated  for an  externally applied  load.     In Fig- 
ures   17  through 28,   the  stress  is divided by the average external  load. 

1.       Changes  in  the Combination of Fiber  and Resin Moduli 

The  three combinations  of  fiber and resin moduli  for  fixed  fiber 
volumetric content,  Vl  * 0.64   ,   are shown in Table  II.     In general,   the 
stresses  in  the  plane  perpendicular  to  the  fiber axis were not affected 
much   (see Figures   17   through  20).     However,   the radial  stresses at  the 
interface would indicate weaknesses in the bond.     Since  the radial  stress 
goes  from minus  to  plus   for    cp = 0°     to    cp = 30°   ,   there will be  tension in 
the bond regardless of whether  the axial  load is  tension or compression. 
For  a compression  load,    a^ < 0   ,   the results  in Figure  17 would tend to 
cancel  the  residual  stresses  in Figure  2,   but  the radial  stresses  for a  ten- 
sile  load will add  to  the  residual  stresses and weaken  the bond even further. 

The axial  stresses, a~~     and    a^   ,   for  the  three  combinations were 

independent of    cp    and within ±5% of the  stresses  calculated by  the  follow- 
ing  simple  equations. 
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These equations for the axial stress due to external load are valid 

for higher fiber volumetric content, as will be described in the next sec- 
tion. 

In addition to the radial stress, the shear stress at the interface 
(see Figure 18), when superimposing the residual shrinkage and external 
load, will also increase the total shear for tensile load and reduce the 
shear for compressive load. 

The axial stress for fiber and resin is shown in Figures 19 and 20 
respectively. 

2. Changes in Fiber Volumetric Content 

The values for the fiber volumetric content were normally 0.64, 0.70, 
and 0.80.  However, an unusual change in the fiber hoop stress occurred when 
fiber content was changed from 0.70 to 0.80 (see Figures 22 and 27). As a 
result, an additional value of fiber content, 0.7.5, was taken to determine 
whether the fiber hoop stress change was abrupt or gradual. From Figure 22, 
this stress distribution occurred between a fiber content of 0.70 and 0.80, 
and can be expected to be more pronounced beyond 0.80 fiber content. 

The radial stresses from external load were similar to the previous 
results. The maximum stress is positive and the minimum is negative, and 
they both increase in magnitude as the fiber volumetric content increases. 

The axial stresses were of the same magnitude as calculated from the 
equations in the previous section. 

3. Changes in the Fiber Radius at V-'- = 0.64 

There was no effect on the stress fields due to a change in the fiber 
radius from 0.0025 inch to 0.005 inch for externally applied load at 
constant volun-ietric content. 
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PART II - THREE-DIMENSIONAL LOAD TRANSFER AMONG THE FIBERS IN A MATRIX 

The fact that uneven loading occurs in 
near the boundaries and near microfractures, 
stand the load transfer among the filaments, 
would create insurmountable mathematical diff 
chosen was one of periodically repeating cha 
tional fibers were assumed to be in a hexago 
fiber axially stressed by an external load, 
assumed to be stressed by load transmission 
the main subject of this portion of the inve 

A.  General Arrangements and Assumptions 

a composite material, especially 
makes it necessary to uader- 
Since an arbitrary arrangement 

iculties, the mathematical model 
racteristics.  The unidirec- 
nal array, with every third 
The rest of the fibers were 
through the matrix, which was 
stigation. 

The composite is considered to be free from residual stresses, and 
axially finite but laterally infinite.  Figure 29 depicts part of the cross 
section of the composite, with the shadowed circles representing the exter- 
nally stressed fibers. 

Figure 29. Geometric Arrangement of Fibers in a 
Unidirectional Multifiber Composite 

Displacements and stresses of a typical hexagonal segment in the com- 
posite will be determined by assuming that the segment before deformation 
changes size yet remains hexagonal after deformation. However, an un- 
deformed cross-sectional plane of the segment may not remain plane during 
deformation. Therefore, the segment is treated by the classical theory of 
elasticity as a three-dimensional body. 
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Since displacements and stresses in fibers and matrix are hexagonally 
symmetric, a triangular prism of the hexagonal segment with its cross sec- 
tion A 0 C D and coordinate systems as shown in Figure 30 will be studied, 

I n—~ I, 
(a) 

Figure 30.  Geometry of a Typical Segment 
in the Composite 

The natural way to attack the problem is to divide the prism into loaded 
fiber (domain I), matrix (domain II), and unloaded fiber (domain III), at 
their interfaces. The elasticity solution derived from Papkovitch functions 
is l:hen applied to each of these domains by determining arbitrary constants 
with appropriate physical conditions.  The present domains are now defined 

as 

Domain I (Loaded Fiber): 

0 S r ^ a 0 < cp <; 
TT -l   £   Z   £  I 
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Domain  II   (Matrix) 

a < r s 

for    0 s CP £ 6 
n 
T -   tan 

" 2 ? 
a     sine +  (b  -  a  cosG) . 

-1    fb-  2a1 

1/2 

2h 

a <; r < h  sec    r - cp 

tor     r- 
o -  tan 

-1 /b  -  2a 
2h 

-I <  z < I 

Domain  III  (Unloaded Fiber); 

r 2       2 211/2 

a    sin 6 +  (b  -  a  cosG)  J <     r    -'    h sec    ^ - cp 

0    s    cp    <   r -  tan" 
b  -  2a 

2h 

-I    <    z <    I 

The quantities a , b , h , £ , and 6 are defined in Figure 30. 

B.  Formulation of Physical Conditions 

The symmetry of radial, circumferential, and axial displacements 
5. (i - 1,2,3)  with respect to zx- and xy-planes dictates that in 
loaded fiber, matrix, and unloaded fiber, 

k k k 
^(r.cp.z) = ^(r.-cp.z) = ^(r.cp.-z) 

l2(r,cp,z) = §2(r,-cp,z) = g2(r,cpJ-s!) 

g3(r,c(5sz) - §^r'-9.z) = IßCr.cp.-z) (1) 

where  the  superscript    k    refers  to  the corresponding domains  I,   II,   or  HI. 
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The periodic characteristic of displacements in loaded fiber, matrix, 
and unloaded fiber leads to 

^(r,cp.2) - Cij^+^.z) (2) 

where k ■ 1,11, and i = 1,2,3 . 

=    S1    (r2,cp2)z)   cos (f - e  - cp2]   + llll[r2>V2>z]   sin (f - 9  - cp2] 

§2 
I(r1,cp1,z]   cos jcp1 + ej  + fj11 jr^cp^zj   sin (cp1 + ej 

"    ^[^'Vl'2] Sinl3  " e  -^1   "  ?2III(r2'CP2'Zl  C0S(3  " e  -^2! 

(3) 

The values of r. , (p. , r» , cp9 in equation (3) are expressed in terms 

of another set of polar coordinates p (0 ^ p s a) and(0 0 ^©^rlwith its 

origin at D  (see Figure 31). 

Figure 31. Periodic Characteristic of 
the Unloaded Fiber 
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These values  are given by 

j~2 2 i 
:      =    VP     sin  6 '+' (b  - P   cosG)' 

^1 
-I       n   sin9 tan      i—e - 

b   -  p   cos0 

^p2--2!9^)^ [b-p cos(e +^)]' 

cp2 
=    tan 

10     \ 
9 + -j j 

|„ ^ 2TT) 
b  - p   cos I 9  + "s-j 

(4) 

Equation  (2) states that  the displacement vectors  of matrix and exter- 
nally  stressed  fiber  possess  sixfold  symmetry.     Equations   (3)  are  the con- 
dition  that radial,   tangential,  and  axial  displacements of the unloaded 
fiber with respect  to  its axis  are  identical  for  every multiple  of    2TT/3 
of  the  polar angle    9   • 

If  continuity in displacements    §.     and appropriate  stresses    a,. 
at  the interface exist,   then 

§i(a,cp,z) §.   (a,cp,z) 

: 

CT1:L(a,cp,z) 
II. . 

ali(a,cp,z) 

gi (r35cp3}z]     =    §i   jr3.cp3.zj 

where    i    =    1,2,3   . 
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II \       III \ 
fll r3'cP3'z) - CTll    r3'cP3'Z 

II \       III \ a22 r3.cp3,2 - a22    Vy^z 

COS 

sin 

cp3 + e + 91 + 

CP3 + e 

11 \      in > a12 r3,«p3Jz    - CT12    r3,cp3>z sin2 (cp3 + el     =     0 

II \ III \ II \ \ 
aIl ^'^S'2     ' all    r3'cP3'Z    " CT22  r3'Cp3'Z    + ^22  r3,C*33'Z    + 

9      II \        m '\1 Cr12    3,CP3'Z     " al2    r35CP3'z     cot 2    93 + e 

II \ Ulf \1 f 
a]3 

r3.93'z)   - cr13    r3,cp3,z      cos    cp3 + 

II \ III a23[r3)cp3Jz    - CT23    r3)cp3,: sin CP3 + 

where 

"22 2 
a     sin 8 +  (b  -  a cos9) 

1/2 

(6) 

CP3 -1 a  sinG .„. tan        r z—~        (7) 
b   -  a  cos? K   J 

TT For a given value of 0   in  the  range    0 ^ 0 s -^ ,   the values  of    r-, 

and    CP3    calculated by  equation  (7)  are  the coordinates of a  point at  the 
interface between domains  II and  III.     Equations   (6)  are  the  continuity con- 
dition  on normal  stress  in  the    p     direction and  circumferential  and axial 
shearing  stresses  at  the interface between domains  II and  III. 

In order   that  the  fibers remain  in  the  regular hexagonal  arrangement 
during deformation,   the  displacement  normal  to  the hexagonal  boundary must 
be  a constant,   denoted  by 

k k 
§1(h sect|;,cp,z)  cosf + §2(h secijf,cp,z)  slnf    =    6 

k = II,III 
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where 

TT 
=    6   -  ^ (9) 

Note that the vanishing of the circumferential displacements go at t^e 

lines OC and OD (Figure 30) will be automatically satisfied once the 
symmetry condition   (1)  is  fulfilled. 

Now  that  the hexagonal  boundary  is  a  symmetrical  plane,   shearing 
stresses vanish  at  the boundary.     Thus,   in  the directions  of  the  boundary 
line    CD    and  the     z    axis, 

k k 
(^(h   sec^cp.z)   -  022^  secij;,cp,z) 

2 CTl2(h  secijf,cp,z)   cot  2ljf    =    0 

a13(h  secij;.cp,z)  + oy^h seci|(,cp,z)   tanij;     =     0 (10) 

k    =    II,   III 

•     r,lf  thon^al   StreSS aPPlied at  the  ends  of the central  fiber as   shown 
in Figure  30(a)   is  denoted by    a0   ,   the appropriate condition is 

^33(^,9,1-0     =    CT (11) 

and if the ends of other fibers and matrix are free from axial stresses, 
then 

a^ir^^l)    =    0 (12) 

k = II,III 
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It can be seen from the Hexagonal symmetry that shearing forces acting 
at the ends of a hexagonal segment automatically vanish as soon as the con- 
dition (2) is fulfilled. If the ends are required to be free from shearing 
stresses,   then 

a3i(r,cp,±l)    =    0 

k = 1,11,111      i =  1,2 

(13) 

The   formulation of  physical  conditions  is  now complete.     In total,  we 
have 54  conditions  to be  satisfied  in  this analysis.     The  solution derived 
from Papkovitch-Neuber  functions   for  the deformation  of  each domain must 
satisfy appropriate  conditions  as  described above. 

C.       General Displacements and  Stresses 

An  elasticity solution derived from Papkovitch  functions was given  in 
a previous  report  (Reference  1).     If nonperiodic  terms  are  taken into 
account,   the  solution  to Laplace's  equation    V^p    = o    can  be written  as 

»o  k>ö 
hnk  V^  + 0jnk V^] 'hnk *^)  + 

6 ,   ,   cos jnk 
(uz)   •   e.     sin(ncp)  + Q.    cos(ncp)     + J        jn jn T J 

^hno ^ + Pjno ^l (Yjno + 6jno Zl [ejn ^^  + 

C.n  cos(ncp)]   +   r^jok  V^0 + 0jok Ko^r)] 'hok  Sin^z) + 

6 .   ,   cos(u,z)   '(e.     + r.     z] + (Q'.      + ß.       log r   (Y. 
"jok vp  'J    \   jo       bjo     /       I   joo      ^joo      0    MTJ oo 

«joo^ho^jo^) (14) 

j = 0,3 
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where P0 is a scalar Papkovitch function and P3  the component of the 

P^  can be expressed 
Papkovitch vector in the axial direction, and where QI 

£ , T] , and [j, are arbitrary constants. The solution 
in terms of Bessel functions of first and second kinds of r , hyperbolic 
functions of  z , and trigonometric functions of cp .  However, solution 
(14) has the advantage that the argument of modified Bessel functions 
In (|xr)  and Kn (^r)  is real in this work. 

The solution to the following equations. 

P coscp P  sincp = 0 

V      P,   sincp + P?  coscp      =    0 (15) 

can be written in a similar form, and the Papkovitch functions Pi and Pz 
in radial and circumferential directions can be determined from these two 

solutions. 

Displacement components are related to Papkovitch functions by 

W.      »  P  - —r—i r-  |- IrP, + ZP0 + P bl     1  4(1 - v) 5r L 1    3   oJ 

li    = P 
2 " 4(] 

r-i—r -4" frP, + zP„ + P 
1 - v)  racp LI    3   o, 

53   ■   p3 " HTTw   h [rPl + 2P3 + Po' (16) 

Thus,   the general displacement  function,   expressed  in terms  of  cylindrical 
polar  coordinates,  can be  found and  simplified,   as  shown in Appendix II.* 

Hooke 
Stresses  of an elastic body are  related to  strains    e^ 
's law as  follows: 

by generalized 

CTiJ 2(1 +v) 1 + 6 
iJ 

2v e 
eiJ+6i3- 

kk 
2v 

(17) 

* Equations   (146)   through   (148) 
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where    6..     is   the Kronecker  delta and where  strains     e..     arc  related to 
displacements  by 

■11 

'33 

13 

or 

Sli       9§- 

öz 9r 

'22 

'12 

•23 

l + i 

55. 
nz 

5 

Bcp 

+ or 

^3 

rBcp 

(18) 

The stresses  corresponding  to  the  above  displacement  function are com- 
puted from equations   (16),   (17),  and   (18).     The  equations  for  stresses  are 
given  in detail  in Appendix  II.* 

D.       Determination of  the Arbitrary Constants 

Arbitrary constants, which enter through equation (14) into solu- 
tions (16) and (17), are to be determined by appropriate conditions of 
each domain. Solutions (16) and (17) have been expressed by the solu- 
tions in Appendix II.** To satisfy the periodic condition (2) of 
matrix and loaded fiber, we specify, after substituting solutions (14) 
and   (15)   into   (16), 

=    6,   12,   18,   24: (19) 

Displacements (16) specified by (19) have been applied by Haener and 
Ashbaugh (Reference 2) to a unidirectional multifiber composite under re- 
sidual shrinkage and axial load. The choice of (19) results in eight of 
the integration constants in the displacements becoming zero for the domains 
I and II respectively.***  In order that the displacements and stresses 
remain bounded at the center of the fiber, the coefficients 3jnk ^n e<lua" 
tion (14) must be zero for the solutions pertaining to the fiber.  Satisfying 

* Equations (149) through (154) 

** Equations (146) through (154) 

*** Equation (156) . 
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the loading condition (1), we choose in the expression for ooo 
Appendix II*) the  |j,  so that  cos^-t = 0 j therefore, 

(see 

kn 
21 

(20) 

k = 2,3,5 

In the stress expression a-io  for the fiber, all the terms involving cosz 
will automatically be zero by reason of the above choice (20). However, 
the terms involving sin z will not be zero and will contribute a loading 
at the end which is a function of r .  Since this is compatible with the 
boundary condition (11), the coefficients of aim    in the stresses must 
be zero.,Wf Therefore, additional relationship between these coefficients 
can be obtained.**" 

Additionally, the unloaded condition (12) of domain II leads to 

II krr 
21 (21) 

k = 1,3,5 

and to the discarding of six further integration constants and a relation 
between four additional integration constants.t 

The periodic condition that displacements of the unloaded fiber are 
identical for every multiple of 2n/3 with respect to 9 has been de- 
scribed by equation (3). The displacements in domain III do not have any 
periodic propertyft in the polar angle cp , the fourteen terms contained in 
the P functions in (16) and (17) being characterized by the factor 
sin ncp or cos ncp for domain III. 

* Equation (154). 

** Equation (154). 

*** Equation (155). 

t Equation (157). 

ft As far as a hexagonal element as shown in Figure 30(a) is concerned, 
displacements of the six unloaded fibers possess sixfold symmetry.  How- 
ever, an elasticity solution is not valid for a discontinuous medium. 
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The  resulting  solution is"the special   case  corresponding  to  the  vanish- 
ing of    n     in  the  expressions    P    and     ji     in  the  solutions   (16)   and   (17). 
The vanishing  of   the  axial  stress  at     z = ±t    in equation  (12)   requires  at 
the end of domain  HI 

III krr 
21 

(22) 

1,3,5 

On  the basis  of  equations  (22)   and   (12),   conclusions  similar  to  that 
made for  the  loaded  part  can be made in  this   case.* 

It  can be  seen  that displacements and  stresses are  composed  of  products 
of functions of     r    and orthogonal  functions  of    cp    and    z   .     The functions 
of    cp    will no  longer  be orthogonal,  however,   as  displacements   (16)  are 
introduced  into  conditions  (3)  and  (8)  and  stresses  (17)   into  conditions 
(6)  and  (10).     This  arises  from the   following  parameters: 

1. The polar  radius    r    is  related  to  the  polar angle    cp    at  the 
hexagonal  boundary. 

2. The  polar  coordinates    r    and    9    at  the interface between 
domains  II  and  111 are related  to  each  other by  condition  (7). 

Coordinates     r 
ditions   (4). 

and    cp    in domain  III are related by  con- 

Because of  the  existence of certain  relations between    r    and    cp   ,   it 
is impossible   to determine  the arbitrary  constants  in solutions   (16) 
and  (17)  by  conditions   (3),   (6),   (8),  and   (10)  as  they stand.     Therefore, 
the following approximation is  developed  such  that these  conditions will  be 
satisfied with any desired or sufficient accuracy. 

In the  design of a  fiber reinforced composite  structure,   a high  ratio 
of fiber  to matrix  is desired,  and,   hence,   the angle subtended  by  the hex- 
agonal boundary of  the matrix toward  the  z-axis   is  small  in a  cross-sectional 
plane.     For example,   this angle  is  about  5°   for   the volume of  fibers  in  a 
composite being 657o.     Therefore,   the hexagonal  boundary of  the matrix   (not 
fibers)  can be  replaced by a circular  cylindrical  surface with  its  axis 
coinciding with  the  z-axis and with its radius  being 

r      »   r   2h +   V4h2 +  (b  -  2a)2. 
m 

(23) 

* Refer  to  equation   (160), 
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With such a substitution, conditions (10a) and (10b) become 

°19frm'<P.Zl {} 
12 ro 

^"|rm^'Zl  :  0 (24) 

The approximation to conditions (3), (6), (8), and (10) will now be 
developed. 

Based on the periodic condition (3) of the unloaded fiber, average dis- 
placement components of a volume element in the direction^, at 9 = 0 and 
9 = TT/2 and in the axial direction are respectively equal to those of a 
corresponding element in the directions at 9 = 2n/3 and 9 = 7n/6 and 
in the axial direction. 

§2   jvv2) sincPi " ^i   IW2) coscpi pd9  dp  dz 

v: 
h  1{r2^2'Z]   sin(3   " ^2)   + ^l11!^^?,^)   COS(3  " ^2) pd0  dp   dz 

jljj       ^"[^^l'2)   s:LncPi + §2II(1-1.91.
Z)  coScp1    p id6  dp dz 

v: 
1 

^"k.cp^z)   sinff - cp2 §2    (r2,cp2Jzj  cos[2 . cp2] pdG  dp   dz 

I   I      ^"(VV2)   Pde   dp   dz    = §3II(r2'tP2'Z)   pde  dP   dz 
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where    m,     is   tlie   number of volume  elements  of domain  III,     nd Vi 
and V. 

are two corresponding equal elements as shown in Figure 31 („shadowed areas 
with the same axial length). 

According to conditions (6a) through (6c), the average displacement of 
the matrix at an element of the interfacial surface between domains II and 
III is equal to the corresponding average displacement of the unloaded 
fiber. 

.II 
:3,cp3 

■') 
co scp. 5".. 3^3 ,*] iincp, ad0  dz 

hl^K'V2)  C0S^ - ?2II|r3,cf,3'Zl sincp. adG  dz 

T'H-I \ L ruf \ ?i ra'^*  ) slncp3    §2 lr3'cp3,z) coscp: ad9  dz 

ll       r3,cp3,z]  sincp3 + §2     [r3,cp3,zj  coscp3    adG 

JA    ^h'^'2)   ad0  dZ    =jjA    53II(r3.cp3^) «de  dz (26) 

i = 1,2,3, . . . m0 

which are the corresponding averages of the displacement components along 
the directions of x-, y-, and z-axes  respectively, and in which A.  is 
an elemental area of the interfacial surface with 
elements. 

m,-,  being the number of 

From conditions (6d) through (6f), two averages of the corresponding 
components of the resultant force produced by normal and shearing stresses 
at an element of the interfacial surface between domains II and III are 
equal to each other. 
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i    all^'^S'2     CÜS ^3 + 6Jcos<p3 + o22   r3,cp^,z     sin cp^ + 0   sincp3 

a12  r3,cp;3,z     sin  2 cp3 + 9 a  cosS) dB   dz 

0U   K'^2)   C0S(CP3 + e)cos93 + CT22   (r3.93.z)   sinjcp3 + ej sincp. 

a12   'r3'<:P3'z)   sin 2\^2 + e a  cosB > d0   dz 

'lira'^a'2)   cos|cP3 + 9Jsincp3 + CT22(r3,cp3,zj   sin[cp3 + ej coscp3 + 

a12|r3Jcp3,z     cos|2 cp    + ej a sin9 > d9  dz 

all  (r3,Cp3'Z]   C0S(CP3 + e]sin(p3 + a22   [r3,cp3>e] sin[cp3+ 9 jco3cp3 + 

CT12  rs'^s'2) cos 2 ^3 + ej a sinQ \ dQ  dz 

-V 

<[o13jr3,cp3,zj   cos|93 + e]   - cr23[r3,cp3,z j  sinL    + 9]    ad9  dz 

A, 
^ifh'^'2) cosK+ e) - ^Tl^'^.'2) ain{^+ e) ade  dz       (27) 

1 =   1,2,3,...m0 

which are  force  components  along  x-,  y-,   and   z-axes  respectively, 
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According to condition (8), the average of the displacements normal to 
the hexagonal boundary must be equal to 5 for any element of the boundary 
plane 

rr 

-«/ B. 

k k 
f   (h seci((,cp,z)   cosljf + §„(h secij;,cp,z)   sinijf h sec ik dt dz = 6   (28) 

where Bi is an elemental area of the boundary plane of the matrix or the 
unloaded fiber. The number m-j of the elements of the matrix boundary is 
not necessarily equal to that of the fiber boundary. 

Based on condition (10), the shearing forces acting at an elemental 
area of the hexagonal boundary must vanish. 

JJB. (R: (h sec\|t,cp,a)  - a,,  (h seci|f,cp,z) sinijf  cosij; 

HI, Gl2  ih sect ,9,z) (sin f  - cos^)f h  sec ij, dt|r dz >}■ (29) 

'B. 
L 

a13  (h sect.cp,z)  cost + a23  ^h sec,lf'cP»z)  siniif h sec t  dt dz   =   0   (30) 

i =  1,2,3,...m„ 

which are  shearing  forces  along  the  boundary   line    C D   (Figure 30)  and  the 
z-axis respectively. 

Applying a  similar approximation to  condition  (13)>   the vanishing  of 
the shearing  force which acts on a small  element,  R^,  of  the end  section 
area requires,   in the directions of x- and y-axes. 

R. 

R. 
i 

k k 
a31(r,cp,-0   coscp - cr32(r,cp,-t)  sincp 

k k 
CT31(r,9J-t)   sincp + o-32(r,cp,'C)  coscp 

rdcp dr    =    0 

rdcp dr    =    0 (31) 

k - I,II,III i =  1,2,3,...m. 
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It is seen that equations   (25)   through  (31)   can be reduced  to condi- 
tions  (3),   (6),   (8),   (10),   and  (13) when the regions in which integrations 
in  these equations are carried over become infinitesimally small.     There- 
fore,   these conditions are  replaced by  the  corresponding equations. 

If two  functions are  defined as 

f(z)     = 
■( 21 

(0 < z  < I) 

il < z < 21) 

zL (0 < z < t) 
g(z)     =   {      2 2 

.-z    + kl z  - 11       Ct, < z < 2-0 
(32) 

then  the variables    z     and     z      contained in  the    P     functions  in displace- 
ments   (16)  and  in the    CT^-s     of  stresses   (17)  can  be represented by 

z   =   M    V" 

2 32^ 

TT 

,   lNk-l/2       1 
(-1) ' —2   sin^z 

k 

,   ,^+1/2        1 
(-1) •    —S-   COSjiZ (33) 

The  introduction of  solutions   (16)   into   (25),   (26),   (27),   and  (28), 
and   (17)   into   (5d,e,f),   (27),   (24),   and   (31)   leads   to a system of linear 
algebraic equations  in  terms  of arbitrary constants  and the unknown    6   . 
The   infinite  series  in  these  equations  are  to be   truncated  in numerical 
computation.     If  the number  of    n    values  is denoted by    n  ,   the  number of 
k    values  in  the  solutions   for domains  I and II  by    ¥12 , and  the  number 
of    k    values  in the solution for domain III by    k3   ,   then the  total number 
of  unknowns  is 

9  X    k12  X n    + 6  x Tc12 + 8  x 1c3 + 8   X n + 12 

The total number of  equations  to be  satisfied is 

8  X    k       x n    + 5 k12 + 7 X n + 
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Thus,   infinite  series existing in this work without any recurring relation- 
ship between  their coefficients are  to be truncated or  the  numbers m^, m2, 
mg,   and m^  are  to be chosen  in such  a way that  the number of unknowns is 
equal  to  the number of equations.     However,   the order of the  square matrix 
is extremely  large.    To reduce the order,   the matrix is subdivided into a 
number of rectangular arrays,  and each array in turn  is a matrix.    After 
some  laborious  computation,   the maximum order of submatrices yields 

E12 X n + 1?12 + n + 2 

or 

4 x TL + 4 

In this study, symmetry condition (1) of a hexagonal segment, periodic 
condition (2) of matrix and loaded fiber, continuity condition (5) at the 
interface between matrix and loaded fiber, and end conditions (11) and (12) 
have been exactly satisfied, while the other physical conditions are approx- 
imately fulfilled.  It is expected that the vanishing of shearing stresses 
(10a) and (10b) at the hexagonal boundary of the matrix will be satisfied 
with sufficient accuracy and that the vanishing of shearing stresses (13a) 
through (13d) at the ends of matrix and loaded fiber and the constant dis- 
placement requirement (8a) at the hexagonal boundary of the matrix will be 
approximately fulfilled for a few values of 1^2 ancl " • The price paid 
for increasing accuracy in the fulfillment of other conditions is that the 
order of the matrix must increase. 

The variation in stresses of a long composite with every other fiber 
loaded is expected to be small in the middle portion of a hexagonal segment, 
and, hence, the corresponding elements chosen for computing efficiency 
should be larger than those close to the ends. The transfer of loads in 
the present case possibly is an end effect; that is, the transmission of 
the largest portion of loads from the externally stressed fiber in a hex- 
agonal segment to six unloaded fibers through the matrix occurs in the 
neighborhood of the ends. 

40 

HHMBMMti ■KMH 



         ■ 
1 ■■■■ ■pun«««! III^ 

PART III - BUCKLING OF A FIBER IN A FINITE ELASTIC MATRIX 
UNDER AXIAL COMPRESSION 

This  study was  concerned with  the determination of  the  critical   load 
of a  fiber embedded  in a soft  elastic matrix  subjected to axial compression. 

The  finite   length  composite  cylinder  is   assumed  to be  free  from  initial 
stresses.    When  the  load  increases   incrementally  from zero,   the  fiber  remains 
straight  and  the composite  is under compression without bending.    When  the 
load  continues  to   increase and  reaches  a  certain value,   the   fiber  deflects 
laterally.     At  this  value,   the  compressive   force  is  called  the Euler  criti- 
cal load.     Later on,   the deflection increases   rapidly with  a small   increase 
of the  applied compression.     Eventually  the   fiber buckles  in a wavy  shape 
and  loses  its natural   function,   the  transmission of compressive  forces, 
Therefore,   the  critical compressive  load   is  very  important  in  the  design 
of such composite  structures. 

An analytical method has been developed  by Sadowsky and Hussain   (Refer- 
ence 3)   to determine   the thermal  critical  load of an infinite fiber bonded 
to an infinite domain of matrix without mechanical loading.     The matrix has 
been treated by the  linear  theory of elasticity as a three-dimensional body, 
and  the  fiber by one-dimensional  elasticity.     The method of approach   is 
reasonable.     In  the  present work,   it additionally accounted  for  the  moment 
produced by axial shear at the interface between fibers and matrix such that 
this  shear  influences  the critical   load.     It  should be pointed out  that the 
total axial  shearing  force at  the interface vanishes,  but not  the produced 
moments. 

The method of  approach to  the present  problem is  similar to  that  devel- 
oped by  the above authors.     Instead of using  Boussinesque-Papkovitch  poten- 
tial functions,   the  equilibrium equations  in  cylindrical  coordinates   for  the 
deformation of matrix are directly  solved in  this work.     Equations of  equi- 
librium for  the  critical  load of  the fiber  are  in a simple manner derived 
by the one-dimensional  nonlinear  theory of  elastic stability,  based on 
statics  consideration different  from that  in  the report by Sadowsky and 
Hussain.     The contribution of axial  shear at   the interface  to the equation 
of moment  equilibrium is  taken  into account.     The critical  compressive   load 
of the composite  cylinder corresponding  to  the buckling  of  the fiber   found 
in this  study is  a  function of  elastic constants,   fiber  radius,   and  outer 
radius of  the composite. 

General Description 

Consider a composite cylinder of finite   length    L   ,   fiber radius     a   , 
and outer radius    b       of the composite with  two coordinate  systems as  shown 
in Figure 32. 

41 

MM.  11. »I mm» 



■IP" iimiMi i - •" 

2b 

r 
_i 
1 

2a 

Figure  32.     Geometry of a Composite Cylinder 

Experiment shows  that the buckling mode of a  fiber  in a  low-modulus 
matrix subjected to axially compressive load is  approximately a plane  sine 
curve.     If  stresses of  the matrix at  the buckling of the  fiber are within 
its elastic range,   it will be appropriate to  treat the matrix by the linear 
theory of  elasticity as a three-dimensional body and the  fiber by the non- 
linear theory of elastic stability as a slender bar subjected to compression 
and appropriate lateral  loading.     If the buckling wave is  chosen in the yz- 
plane  (Figure  33)  and  if the deflection of the fiber in   the  y-direction is 
denoted by    v  ,  then the buckling wave of the fiber can be written as 

v    = v    sinaz 
o 

(34) 

where    v       is the amplitude of the sine curve and where 

a    ■ nrr (35) 

with    n    being  the number of half     wavelength  along  the  z-axis. 
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Figure 33.  Fiber at the Buckling 

Displacements and stresses given by (16) and (17) for load transfer 
through fibers in a matrix (Part II of this chapter: Three-Dimensional 
Load Transfer Among the Fibers in a Matrix) are suitable to the deformation 
of the matrix under consideration by appropriate choice of the Cartesian 
coordinate system. However, arbitrary constants in these expressions are 
difficult to determi ie in the present case.  To simplify the problem, the 
approach described in Part I of this chapter (Parametric Studies) is 
applied. 

Based on the three-dimensional theory of elasticity for a close- 
packed, fiber composite under compression, stresses in the plane per- 
pendicular to fiber axis were vanishingly small compared to the average 
axial stress for the epoxy-fiberglass composite. 

It may be assumed in the present analysis, without introducing appre- 
ciable error in the results,that the stresses developed during buckling at 
the interface between the fiber and matrix are produced by bending only. 

The displacements and stresses of the matrix are given in Appendix III 
to this report. 

Equations of Equilibrium of the Fiber and Its Critical Compressive Load 

Consider an element, AB , of the fiber with length dz before bending. 
It is suppositioned that this element has already been under compression. 
After bending, AB will displace to A'B' , 

When some lateral deflection is produced in the compressed bar, there 
is some change in compression, but a more detailed investigation by  S. Timo~ 
shenko (Reference 4) shows that this change is negligible.  Since the 
compressive load is not changed, the fiber axis will be under the same axial 
force as that before bendingjand there will be no change in the length along 
the neutral plane. During bending, axial forces N , transverse shearing 
forces Q , bending moments M at the ends of this element, lateral 
forces S per unit length, and axial shearing forces T per unit length 
are shown in Figure 34. 
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M— dz  —H 

Q+^dz 

M + ^ dz 

v + — dz 
Bz 

N-^dz 
9z 

Figure 34. Geometry of the Fiber 

The equation of equilibrium on the moment in the x-direction requires 

fUq +M. = o 
dz  x   i 

(36) 

where the last term M.  is the contribution of moment per unit length pro- 
duced by axial shear at the interface between fiber and matrix. 

If the radius of curvature of the element dz  is denoted by R , then 
the result of two transverse shearing forces is in tie negative direction 
of the z-axis, with the magnitude being Qdz/R, and the result of two axial 
forces is Ndz/R in the negative direction of the y-axis. Therefore, the 
equilibrium equations on the force components along y- and z-axes are given 
by 

da 
dz 

S+- = 0 (37) 

dN 
dz 

+ T a  = 
R 

(38) 

where the nonlinearity has been introduced by considering the influence of 
the deflection v and where the angle of rotation of the element has been 
assumed to be small. 
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The moment M  produced by axial shear ai3(a,cp,z)  in the x-direc- 
tion,* 

I CT13lp2'CP'Z) Siny  ^ 
o 

M  = 2 a 
s 

2    o 
=  TT a  V  a    COSCk'Z 

0  iJ 
(39) 

and the component of the moment produced by cTio at t'16 interface in the 
y direction automatically vanishes. 

The lateral force S at the interface yields, by using (196), 

■2TT 

S = crii p2'cp'z sini:p+ CTi2(p2'cf>'z) cosy adcp 

i o    o , 
TT a vo a^ + a,« 1 sinaz (40) 

and the force component produced by stresses (j-,-,  and Q^ at 

face in the x-direction automatically vanishes. 

The axial shearing force T at the interface is from (196) 

the inter- 

•2TT 

T = CT13|P2'CP'Z) adcp = 0 (41) 

Using (34), (39), (40), and (41) and the relations 

* See equation (196). 

1 
R 

M    = 

dfv 
dz2 

E1! rr „4    I d v 
4 "2 dz 

45 
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Equilibrium equations  (36),   (37),  and  (30)  are reduced to 

TT a 
4 a    E   a    + — CTio a    13 

dß 
na /  o o 

'    2    CT11 +a12 
Q- 

) (44) 

^ - » 

where    0    is the angle of rotation given by 

„      dv 
6 sa T"    =    v    a  COSQ-Z ^       dz o 

Elimination of Q  from (44b and c) gives 

(45) 

2 
d N   .  M na f   o o 
7T + N "    T    CT11 + CT12 
dß 01 

which has the solution 

N    =    C^.coaß + C2 sinß + 2| jcr^ + CT°2j 
0/ 

(46) 

where C^ and C2 are arbitrary constants.  Introduction of (46) into 
(44c) yields 

Q = C1 sinß - C„ cosf (47) 

In agreement with   the assumption of small angle of rotation,   functions 
sinß    and    cosß     are replaced by    ß    and     1    respectively.    Thus,   (46)   and 
(47) are reduced to 

N    =    q +C2 ß +n| [^ + 0
0\ 

a 

Q    =    C! ß ^ C2 (48) 
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Comparing  (48b) with   (44a)   leads to 

-    0 

TT a ^E1 2.4    ol 
01    +äCT13j (49) 

By substitution,   the  solution  (48a)  results  in 

N    =    TT a 
1  ,,1    2    2   L 

u13 
-r E    a   a   +  4 a 

1      I    O 0 
CT-, ,   + Q. 

a a 2 \ull   '  u12 
(50) 

which  is  the  internal  axial  force of the microfiber  at  any cross section. 

If the applied compression of  the microfiber  is  denoted by    P     ,   then 
we must have at  its  ends 

or 

(51) 

2  I"1 v1    2    2 J E    a   ot    + 

o 

111 
a a a 

an +u u] (52) 

in which    cr^  (iasl>2,3)     are  functions of    a,   b, a    and elastic constants 
of  the matrix.    Thus,   (52)  contains only the parameter    a    to be determined 
by the minimization of    P-*- 

d P 
da 

(53) 

from which a    or the ratio of number of half wavelength to fiber length 
can be computed. The compressive force P  corresponding to this value of 
a    is  the critical load of the fiber denoted by P*. .  The corresponding 
compressive force applied to the ends of the matrix is determined from the 
condition that the axial displacement of the matrix is the same as that of 
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the microfiber at the ends of the composite. 
pHj we have from the above condition, 

If this load is denoted by 

,11 
,11 

V - ' cr (54) 

The total compressive load, P* 
then given by 

applied at the ends of the composite is 

p* = P1 -.P11 
cr 

(55) 

which corresponds to the buckling of the fiber, 

The constant axial displacement at the ends of the composite is not 
necessary to require the vanishing of the right-hand side of (193c).  The 
axial displacement produced by bending is of influence with axial stresses, 
but not the axial force acting on a cross section because of geometrical 
symmetry of the fiber with respect to the neutral plane.  Actually, the 
axial displacement produced by bending at the beginning of the fiber buck- 
ling can be neglected, since the length of the fiber axis does not change 
by bending and the angle of rotation is small.  If this is done, the cor- 
responding change in other equations is to set the right-hand side of (195) 
to zero. 

It is seen from (52) that aw (i"l,2,3)  is the contribution, to the 
critical load, of interfacial pressure and circumferential and axial shearing 
stresses at the interface between fiber and matrix.  The critical load P1 

and, hence, P^ and P* are simply functions of elastic constants of fiber 
and matrix, fiber radius, and outer radius of the matrix.  Thermal buckling 
load of an infinite-length fiber bonded to an infinite domain of the matrix 
without mechanical loading and critical load of a finite-length fiber in 
lateral infinite matrix under axial compression can be treated as special 
cases of the present result by performing the integrals in (177), (181), 
and (185) analytically. 
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PART IV - ENERGY SOLUTIONS OF THE INSTABILITY PROBLEM 

The problem of the buckling of microfiber embedded in a supporting 
matrix, under axial compression and under internal shrinkage load, was 
analytically investigated with energy methods in five different cases. 
The models include a single-fiber and multifiber reinforced composite of 
finite dimension, and a single fioer in an infinite matrix. The multifibers 
under internal shrinkage loads are treated with a simplified assumption, 
allowing the use of the Lagrange mul*"1 "1 ■; ^r method of variation. 

The Ritz-Galerkin method minimizing total potential energy was used in 
deriving the equation for obtaining the critical load of the fiber.  In the 
present analysis, total potential energy contains the strain energy due to 
the bending and extension of the fiber, plus the energy of the interfacial 
pressure and longitudinal shear applied by the matrix to the fiber less the 
work done by external force.  The stress field of the binder was determined 
by solving a plane elasticity problem. However, it was solved two- 
dimensionally as well as three-dimensionally for the case of the multifiber 
reinforced composite of finite size.  The fiber and matrix elasticity are 
well matched at the interface by imposing boundary conditions requiring the 
continuity of stresses or displacements. Finally, the smallest buckling 
criterion was found by variation with respect to the wave parameter. 

To formulate the problem, the following assumptions were made; 

1. Both materials are linearly elastic, Isotropie, and homogeneous. 

2. Elongation, shear, and rotation of constituents are small in 
comparison with unity. 

3. The deflection curve of the fiber and then the distribution of 
the interfacial force at the buckling state are sinusoidal in 
the axial direction. 

/ 

4. Binder modulus is much smaller than fiber modulus. 

5. The cross-sectional area of the fiber remains plane and 
circular after loading. 

6. During buckling, there is no relative slip between fiber and 
matrix. 
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A.       Buckling of Multifibers  ia a Finite Matrix 

1.     Buckling Load  of  the Fiber  (Ritz Method) 

1  I  I -Li- 

Figure 35. Half Critical Wavelength 
Shown on One Fiber 

Geometric boundary conditions are, at 

= 0.^ = 0 

and at 

z - L , §; = o 

(56) 

(57) 

Taking into consideration the geometrical boundary conditions of the fiber, 
we can assume its deflection curve, 

00 

h    = Ijin  Sin 
n=l 

nnz 

L 
(58) 

In the present problem, the total potential energy includes strain 
energy due to the bending and extension of the fiber, plus the strain energy 
due to interfacial pressure and axial shear applied by matrix on the fiber, 
less the work done by external force. 
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The strain  energy due  to bending  of  the fiber   is  shown below  (see 
Figure  36). 

U, E1!1 

Jo 

.2  I d  ?! 

dz 
dz (59) 

Figure 36.  Bending of a Fiber Element 

The strain energy due to the extension of the fiber is derived as follows 
(see Figure 37). 

=  dz' 

Figure  37 Schematic Diagram of a Fiber 
Element During Loading 
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The deformed   length  of an  element   of   the  fiber  is 

ds     ="VldZ + d§3l2+   (d ^if 

=    dz 
d§3       1     d?3 1 + —-i + i-    i 

dz 2       dz + 1 
2 

d § 
I\ 

dz 
+ 

Then  the  increase of  strain energy due  to the  shortening  of   the   fiber  is 

ri 
Pi(ds   -  dz) 

dz 2 

I\ 
(d^ 
I   dz   , 

dz (60) 

The strain energy due to the interfacial pressure contributed by the matrix 
is 

2 Pln ^ dz 

^(^l2 dz (61) 

The strain  energy due  to axial  shear   contributed by matrix  is  depicted  in 
Figure 38. 
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b-a=d 

LP 

I) 

£)-—*, 

Figure  38.     Geometry of Two Neighboring Fibers 
in a Multifiber Composite 

In the matrix,   shear  strain  is expressed  by 

II + 
'13 9r 9z 

Since shear  strain  should be continuous  at  the interface,   then 

Also 

But 

then 

ögJV) B^(a) 
öz 9z 

or 
^(a)   -  I^Cb)      §^(0) 

.II 
SF: 

§3    =   a-5I 

11 
:13 

1 + d) az 

(62) 

(63) 

. ■      ■■ 
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II 
r13 

r11 .II 
G      el3 I d/ 5z 

(64) 

Thus,   the strain energy due  to   longitudinal  shear of  the matrix on the  fiber 
is 

n   lb2   -   a^G11   [.    .   a 
2 r ■"■ d1 

52 
dz (65) 

The  external work by prescribed  loading during buckling  is 

W    = PL hW   - PR h^ h p3 dz 

PL §3(0)   - PR §3(1) + 
.1 dP_" 
'3 dz E* "5— dz 

■f 0 

*\\ 

r, 

<L 
r1 dP     , 
So Z— dz s3  dz 

I  d ^3 
dz 

o      -'o 

dz (66) 

Pi 

dz 

.EL p-1- + dp1^ 

rR .1 

Figure 39.     Schematic Diagram Showing One 
Fiber Under  External Load 
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since 

P1  -   (P1 ,+ dP1)   -  p„  dz    -    0 

dP 
'3     '    dz 

Therefore,   the  total potential  energy    T       is 

U,   + U    + U    + U 
b e p s 

1 
2 E1!1 

dz   / 

W 

dz 
dz 2    dz   / 

dz  + 

J o 

I\2   , \       /   2     2 
dz + 2 TT  |b  -a )G«(1 + fp 

L  ,,_I,2 f^r 
dz 

dz + 

I d^3 
P    ■— dz dz 

Thus 

• 

(67) 

(68) 

E1!1 'dV^ 
dz   , a. - i P1 

rL[^f 
dz 

dz + 

^ ̂
dz.iG^njb2^2 l+£ 

rL 1.2 
9§7 

laz dz (69) 

i 
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Substituting equation (58) into equation (69) and making use of integral 
identities, we get 

1 „I TI L 
2E I 2 *lnl     \ L I     "2   2 ^n)2(T)2 + 

2 K 2 >L)24-ul^2)(i + f)
2|£(cL)2(rr<- 

n=l 

Minimization of total potential energy with respect to the amplitude of the 
assumed curve gives the stationary condition; i.e., 

ÖT 
= 0 

ö? lj j = 1,2,3, 

From equation  (70) 

e 1 „I „I .     I 
=    7E    I    L§ 

lj 
JTT\4   .  L ,   .1 
Li    ^^ij-^ 

.   .2 

fd^Wf) ?^
2-¥^m =   o (71) 

This  equation  either yields    |lj  = 0   ,    which  gives  the undesirable  case  of 
zero deflection,  or  the   following results  are obtained: 

^iM^r-a w j        1.2    3 
2 '     IL  /     '   2  k +777J    n 

c.     Li 

bV)(1 + !)  o" 

\tA^     o 
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v^hich gives   the  critical   load  for  the  fiber;   i.e., 

cr 

2    2 T T T2 

~rE  I +TI 
L n TT 

k + nf^-aV1   (l+j)2 (72) 

where k has the dimension of pound per square inch, and is equal to the 
ratio of interfacial force per unit length to unit lateral deflection. 

Foundation constant k for the raultifiber reinforced matrix is derived 
as shown in Figure 38. 

We can imagine the matrix as a two-dimensional plate and under merely the 
normal interfacial force per unit length p^z) . The expression piCz) 
must have similar distribution as 

'!«  - I P,, - T " l> £ 
n=1 n=1 

sin 
nrrz 

Therefore,   the boundary conditions  are,  at    r = 0  , 

II           n=l 
rll    =      

.   _II     .     nnz 
k e       sm -7— 11 In L 

na 

a 
II 
13 

(73) 

(74) 

(75) 

and  at     r = 2d 

,11     .     nnz 
k F..     sin —;— 

^In L 
II 

rll 

II 
r13 

na 

=    0 

(76) 

(77) 
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The stress field in the matrix can be represented by the following 
stress function 

«(r,z) 

uu 

n»l 

/ \  J  nnz $ (r) sin -r- 
n       u 

(78) 

By substituting this equation into the differential equation (from Ref- 
erence 5) 

o $ . 5 I 
4 ■ ' ^ 2. 2 + . 4 

Sr    9r Bz   Sz 
LI + 2 ^^^-^ + ~> =  U (79) 

we get 

If) K^   -2 |f) $n^) + ^^     -    0 (80) 

The solution to the partial differential equation (79) is 

Hr.z) 

00 

I nn *n-MT)+BJTI-M^ + 

'„ ^ IT)+ "„ IT) -- IT1 
sin 

nrrz 
(81) 
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The stress components are 

II 
CT33 

52$ 

ar2 

CO 

I 
"=1,2, 

A    + 2 D  1   cosh    ^ 
n nl 1   L ^„(Tl-MTl* 

^n^J'^lT   ^nm^lT sin 
nnz 

II 
rll a.2 

03 

n^ni,.. 
\-»m + B„(T)-h(T) + nnr 

^"m^m'HT sxn,^) (83) 

(82) 

II a2. 
13 BrQz 

n=l,2, 
K + »n) ^ (T) + ».;(¥) '^ (T) 

B    + C   1  cos 
n n MTKlTlHTl nnz 

•  cos    ^ (84) 
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Applying boundary conditions (74) to (77), we have 

k I II 
In 

na 

B    + C      »0 
n        n 

\ <- im+\ i^) -»i1^) + 

Cn ^  l1^) + \ IH^] ^ i1^ 
sln 
na 

(85) 

(86) 

(87) 

A       •  u    2 nrrd.   .   D A    smh    —;     + B 
n i     L     J n 

nnd\ I 2 and] ,   / 2 nnd\ 
L )sinh I-L) 

+ cosh|-r~l + 

C     cosh m^\  + D 
n \     L    ; n 

,    ,2  nnd\   i sinh    —:—    + 

2  nrrd \ .   / 2  nrrd 
-r~lcosh =    0 (88) 

Substitution of   (85)  and   (86)   into  (87)  yields 

k § 
II 
In 

na 
cosh (i^) + Bn [L^] cosh (i^). 

,   , 2 nnd\ slnh  ,___] + D 
2 nnd1     .   ,   I 2 nnd 

sinh    —;—- 
k § 

II 
In 

na 
(89) 
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Substituting (85) and (86) into (88), we get 

k § 
II 

-ia^l^j^Jl^dj^l^j 

D e-;„h     2  nr"i    J. 2 nnd    .  2 nnd sinh —-— + —-— cosh —  0      (90) 

The denominator of Bn and Dn . solved from equations (89) and (90). U 

2 nnd I2 

L '/ " sinh 
2 (2 nnd 

L (91) 

The numerator of coefficient  Bn , solved from equations (89) and (90), is 

k § 
II 
In 

na 
2 nrrdl  2 nnd 

cosh (Ifll) . sinh 2_nnd + 

!inh 2_2nd] cosh 12^ 
(92) 

The numerator for coefficient Dn , found from (89) and (90), is 

k JT11 

na        L 
2 "nd   ,_, / 2 nnd 

- sinh (93) 

Then the results of coefficients are as foil ows; 

k§ 
11 
in 

na (94) 
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k  | 
II 

na 
2 nnd ^1 co* (ifiä) . ^ (ifä', ■■ 

sinh 1^1 i    |2nTTd\ cosh  |—-—j 
2  nnd\2 .   , 2 | 2 nnd 

-  smh (95) 

C       »     -  B 
n n 

(96) 

k § 

na 

11 
In     .   .   f 2  nirdl 

sinh |__-| [2^1 sinh 
2  nrrd 

2 mrd sinh 
2 f 2  nnd (97) 

By law of two-dimensional elasticity for the plane stress problem,  we have 

är 

II II        II II 
lii     V    (733 

E11"       E11 
(98) 

.II 
S§3_ 

9z 

II        II II 
Coo        V     CTn 

E 

33 
II 

11 
.II 

(99) 

Substituting expressions   (94)   through   (97)   into equations   (83)   and   (84) 
and  the  results   into   (88),  we obtain 

•2d 
II 1 

.II 
II 

rll 
II    II     . 

v      033] dr (100) 
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By  integrating equation   (100), we get,   after extensive analysis, 

oo     _II 

.II 
'1 

kL       V^  £ln 
II 2      /   .    n 

TT a    i—J 
n=l 

-8 d    + 8  d     cosh  12  d 
n n n 

2   sinh3 [2 dnj  -  4  sinh (2  d   j cosh (2d] 

2   sinh  I 2 d      +2  sinh    2  d   |   cosh     |2  d Jlf 

[(2  d]2   -  sinh2   (2   d^ JI^Hin    Q'^z (101) 

Thus 

k    '   -Ü    =    E      TTa   /      an :2dn)2.sinh2(2dn)]- 

[-8 dn + 8 dn cosh   (2d   1-2  sinh3 (2d] 

2   sinh  12 dl   -4  sinh    2d       cosh    2 d   | + 

where 

2  sinh  j 2 dlcosh      2 d  11 ^ (102) 

nrrd 
L 

TTd . 
-C n 
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2.     Smallest  Buckling Load and  Buckling Wavelength of  the Fiber 

From equation  (72),  we have 

2  2 2 
P ■   —ö- E I    +    0   .. cr T2 2  2 

L n n 

2 
k + nlb^a^G1  (l + ^) (103) 

Let ^Y"    -    oin   •    Combination of equations (102) and (103) yields the 

expression for critical load 

cr 
- sinh \2 a  dj — 

[-2 sinh3  (2 a d)  - 8 and   +8 a^d cosh  (2 o^d]  - 

4  sinh ( 2 Q- d I  cosh ( 2 Q^d j + 2  sinh { 2 o^d j + 

2  sinh  ( 2 and ] cosh2   ( 2 cyi]]> + n^-a^G11  ( 1 + f)       (104) 

Since  the  buckling  load  (104)  depends  on the wavelength 

• ,    IE 
'cr 0/. 

(105) 

(104) must be minimized with respect to an    to obtain the critical wave- 
length corresponding to the smallest critical buckling load of the fiber 

ÖP cr 
bot_ 

= 0 (106) 
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The result of   (106)   is 

2 a    E1 I1   f.  2  sinh3 [2 a d)   -Sad + Sad cosh   ll a d\  - 
n L In/ n n \       n   } 

4 sinh I 2 a d j cosh | 2 cv d | + 2 sinh I 2 a  d] + 

2 sinh (2.nd)coSh
2(2.nd)]

24.EIITTa||(2.nd] 

4 a d  sinh    2 a  d )   cosh  \2 a d 1 + sinh       2 
n I        n   I n    ' 

and)] 

[-2  sinh    [ 2 o^d ]  -Sad + So-d  cosh   (2 a  d]  - 

4 sinh     2 o^dj   cosh  [ 2 Q- d j + 2  sinh  | 2 o-  d | + 

2 sinh  [2 o^d]  cosh2  12 a d]l - Q'n[f2 a d] 2 2 
sinh    I 2 cy d 

[-4d  sinh    { 2 a  d |  cosh  (2 a d|   -  8d +  12  d  cosh    2 Q-  d|  + 

16d    an sinh { 2 a  d | - 8d  sinh       2 Q- dj   -  8d  cosh2 f 2 a d 1 + 

4d  cosh3 |2 Ck'ndj]l    =    0 (107) 

EI 
From equation (107), we can determine an    as a function of ■==■=• , 

E11 

a and b .  In other words, we obtain the critical wavelength t      ■ — 5 cr      cVj 

as a  function of   the material  constants,   the diameter of  the  fibers,   and 
the volume percentage of the fibers.     Substituting this value  of    o-i     into 

equation   (104),  we   then get  the minimized  critical buckling  load,     P 
er min 
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3.     Alternative Way of Finding  the Strain Energy Due   to Longitudinal 
Shear 

I 
2 

II    II   . 
ol2 el3 dv CT13)    dv (108) 

II The  expression    CT-IO     from equation  (84)  has  been introduced into   (108). 

After performing the indicated operations,   the results of  strain energy due 
to  longitudinal  shear have been  used to replace  the  last   term of equation 
(103).     In this manner, then, the  smallest buckling  load and  corresponding 
wavelength were obtained. 

^2J    -3 

T OTT 9 kdQ'n 

P        =   a    E    1   + a     k + ^—77 cr n n _       2 „II 
2TT a    G 

(109) 

Y is an analytical expression given in Appendix IV.A (198a). The equation 
for an is given in Appendix IV.A (200), while k (a kind of a foundation 
constant)  is given in equation  (102). 

■ 
B.       Buckling of a Single Fiber in a Finite Matrix 

1.     Constant    k    for Single Fiber  in a Finite Matrix 

Figure 40.     Single Fiber Dimensions 

Assume  load per unit  length  at  the interface, 

P^x) 

oa 

■I . nrrz 
p. sin -r— rln L 

n-1,2. 

(110) 
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The boundary' conditions are: 

Pln Sin -T 

at    r ■ 0 , 

at  r « c = b-a 

II 
ril 

II 
rll 

^»••- 
TTa 

= 0  , 

II 
rl3 

II 
r13 

- 0 

= 0 

)  (111) 

By applying the solutions for stresses, equations (83) and (84) the 
integration constants are established [Appendix IV.B, equations (201) 
through (204)] . These constants are used in the displacements and stresses 
to express the strain energy during loading 

1 I    II    V     . 
2 CT13 £13 dv 

'v 
771 K'r dv (112) 

written out   in Appendix  IV.B,   equation  (214), which contains   the  strain 
energy due  to  shear at  the   interface.     The critical  load was   then computed: 

,11 ,,! 2     I TI      E~: na f .2 .,2,1. P =    a     E     I    +      d     -   sinh     d      -r 
cr n ck1 L  n nj 

2|dn  -  sinh dnj(cosh d    -   l) > + 

E" nd   (! + VII] JL [d2  .  sinh2 dJ
2 , 

The  expression    Q^   ,  X    in equation  (113)  can be found in equation  (220) 
and  (215)  respertively,  while    dn ■ and   . 
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C.       Buckling of  a Finite   Single Fiber  in  an  Infinite Matrix 

If  the matrix  is  infinite,   then    b = <»  .     Thus,   it is more  convenient 
that  the  solution of  the differential  equation   (79)   takes  the  following 
form 

Aen+B(ar\en+Ce + 
n n 1    n n 

-Q1   r 

D    (arle    n      sinja^ n       n n 
(114) 

By routine procedures, the stresses and strains are found from the potential 

$ .* 

Kl 
(115) 

.II 
where p,  is the lateral unit interfacial force and §,  is the lateral 
displacement.  The minimum critical buckling load and the corresponding 
wavelength are derived in (236) through (237), and are restated here: 

P =     1.9 
cr 

EIInal3 + vIIl' 
11\2 

2/3 
E1!1 (116) 

The wavelength  corresponding to  the  critical   load is 

cr 
2^ 

3116n2 E1 I1 1 - v 

a E HI (TTT1! 
II 2 

(117) 

The numerical   results  of  the buckling wavelength   for a  single   fiber 
coincide with   test  results  obtained   from experiment  performed  during this 
contract.     In Figures 42   through 60,   the  critical wavelength and   the 

EI 
buckling loads  of a multifiber are plotted  as  a  function  of       ,   the 

TT 

fiber radius a , with volume percentage content of the fiber as a param- 
eter. In Figures 61 and 62, the wavelength and buckling load of a single 
fiber are plotted versus the radius of the fiber. 

* Equations (224) through (226) and (229) 
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Figure 41. Critical Buckling Wavelength of the 
Fiber versus the Ratio of the Moduli 
(a = 1 X 10-3in.) 

Figure 42. Critical Buckling Wavelength of the 
Fiber versus the Ratio of the Moduli 
(a = 2.0 X 10-3in.) 
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Figure  43.    Critical Buckling Wavelength of the 
Fiber versus  the Ratio of the Moduli 
(a = 2.5  X 10-3in.) 
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Figure 44.     Critical Buckling Wavelength of the 
Fiber versus  the Ratio of the Moduli 
(a =  3.5  X 10"3in.) 
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(a x 103in.) 

Critical Buckling Wavelength  of  the Fiber 
versus Radius of  the Fiber   (E1 =  3.8  X 106 

psi,  E11 = 3.8 X 105psi,   or E^EII =  10) 
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▼ V1 =  64% / ̂  
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Figure 46.     Critical Buckling Wavelength of  the Fiber 
versus Radius of  the Fiber   (E-t =  1  X  107 

E11 = 3.8 X 105psi,   or E1^!! = 26.4) 
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Figure  47.     Critical  Buckling Wavelength  of  the Fiber 
versus  Radius  of  the  Fiber   (E1 =  2.28  x 
106psi,  E11 =  3.38  X  105psi,   or 
EVE11 =  60) 
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Figure  48.     Critical  Buckling Wavelength  of   the Fiber 
versus  Radius  of   the  Fiber   (E1 =   3.8   X 
107psi)  E11 =  3.8  X  105psi,   or 
Ei/EU  =  100) 
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Figure 49. Critical Buckling Wavelength of the Fiber 
versus Radius of the Fiber (E = 5.32 X 
lö7psi, E11 = 3.8 X lO^psi, or 

EI/ElI = 140) 
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Figure 50.  Critical Buckling Wavelength of the Fiber 
versus Radius of the Fiber (E1 = 6 X 107 

psi, E11 = 3.8 X loSpsi, or EI/ElI = 158) 
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Figure  51.    Critical Buckling Load of  the Fiber 
versus  the Ratio  of Young's Moduli 
(a =  1  X 10-3in.) 

x A. 
20 40 60 80 

E^E11 

100 120       140 160 

Figure  52. Critical Buckling Load of  the Fiber 
versus  the Ratio  of Young's Moduli 
(a =  2  x 10-3in.) 
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Figure  53.     Critical  Buckling Load of  the Fiber 
versus  the Ratio of Young's Moduli 
(a = 2.5  X I0-3in0 
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Figure   54. Critical Buckling Load  of  the Fiber 
versus  the Ratio of Young's Moduli 
(a =  3.5  X 10-3in.) 
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Figure  55.     Critical Buckling Load of  the Fiber  versus 
Radius  of   the Fiber   (E1 =  3.8 X  106psi, 
E11 =  3.8  X  lO^si,   or EI/E11 «  10) 

2.5r 

V" =  64% 

V1 =  70% 

(a   X  103in.) 

Figure 56.     Critical Buckling Load of  the Fiber  versus 
Radius of  the  Fiber   (E1 =   1  x  107psi, 
E11 =  3.8  X  105psi,   or EI/E11 =  26.4) 
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Figure  57.     Critical Buckling Load of  the Fiber versus 
Radius of  the Fiber   (E1 =  2.28  X lO^psi, 
EH =  3.8 X  lO^psi,   or EI/EII =  60) 
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Figure  58.     Critical Buckling Load of  the Fiber versus 
Radius  of  the Fiber   (E1 =  3.8  X 107psi, 
E11 =  3.8  X  105psi,   or EI/E11 =  100) 
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Figure  59.     Critical  Buckling Load of  the Fiber versus 
Radius  of  the Fiber  (E1 =  5.32   X  107psi, 
E11 =  3.8  X  105psi,   or EI/E11 =   140) 
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Figure 60.     Critical  Buckling Load of the Fiber versus 
Radius  of  the Fiber   (E1 =  6  X  107psi, 
E11 =  3.8  X 105psi,  or El/E11 =   158) 
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Figure  61.     Critical  Buckling Wavelength versus 
Radius  of  the Fiber 

4 " 

2 - Theoretical results 

Experimental results 

(a  X  103in.) 

Figure 62.    Smallest Critical Buckling Load of  the 
Fiber versus  Radius  of  the Fiber 
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D.       Buckling  of a Multifiber Composite   Due to Resin  Shrinkage 

In  this   treatment, the  energy was derived   for  a  fiber  resin  cell.     The 
equilibrium equation  formulated  as an  energy variational  problem derived  in 
Appendix  IV.D  is 

6 j    {j [EV + E1^11] e
2 + i [E

1
!
1
 + E11!11; 9 

E1^11 pe Uz   = 

N 

n=l 

(118) 

with   the  restraining condition 

(1 + e)   coscp -   (1 + $)}  dz     =    0 (119) 

In equation (118), the first brackets contain the compression energy 
in the axial direction; the second, the bending energy of the resin and the 
fiber.  The third expression in (118) is the shrinkage energy of the resin. 
The right-hand expression in (118) is the energy introduced by the external 
force.  The restraining condition (119) is derived from a simplifying assump- 
tion that the longitudinal change of the matrix is equal to that of the 
fiber.  It must be emphasized that in this manner, the shear produced in 
longitudinal direction during buckling is neglected to simplify the resulting 
Lagrange equation. 

The Lagrange equations corresponding to (118) are 

Pe + R + X  coscp    =    0 (120) 

Qcp" + \   (1 + £)sincp (121) 
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The factor \    is the Lagrange multiplier expressed in Appendix IV.D,equa- 
tion (274).  From equations (120) and (121), the following differential for 
cp is obtained ; 

Qcp" + A, 1 -— -—   coscp sincp = 0 
I   P   P     1 

(122) 

The characteristic equation of (122) and the derivations necessary are given 
in Appendix IV.D* and are restated here: 

9 4^E(cp;k) - F(cp;k) f^g (123) 

To obtain  the displacement  of  the  fiber axis,  cp    has  to be  substituted  into 
equation   (351)  of Appendix IV.D.     The wavelength  is  obtained by  equation 
(302),   or by 

2nV2 P Q 

Vx   (P  - R 
(124) 

\) 

For small amplitudes of the maximum slope cp of the buckling curve, the 
Lagrange multiplier becomes, for the first approximation,** 

(R + 0 P) (125) 

This is a reasonably good solution for the eigenvalue \   .     By calculating 
the second approximation, we must use equation (350) in Appendix IV.D.  In 
this case, \  is the force exerted upon the fiber by the resin. 

In spite of the fact that the interfacial shear was neglected, the re- 
sults of this analysis coincide with the results obtained by Rosen (Refer- 
ence 6).  For E1 - 10 X lO^si and E11 = 3.8 x 105psi , where radius 
(a) = 2.5 X 10"3 , half distance of the fibers (b) = 2.976 x 10"3 , and the 
shrinkage ß = 1%. 

* Equations (275) through (388). 

^«■Reference equation (393). 
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The values  in   (124)  and   (125)  are 

P    =    AV + A1^11    =     199.56 

„II      .II     „II ,        rs lrt-3 E      Aß =    4.56   x  10 

(R + ß  P)     =     1.95 

Q    =    EIII + EIII11    =    3.17   x  10"4 

The computed wavelength  is 

z      =    0.114 in. 
w 

E.  Buckling of Multifibers in a Matrix Under Axial Load With the Matrix 
Treated as a Three-Dimensional Cylinder 

The criti^a] buckling load of the fiber was found by minimizing total 
potential energy with respect to the amplitude of the assumed deflection 
curve of the fiber"'* and is rewritten as follows: 

_I     2 I _!   k ,  / 2 2) TI /   af 
P   ■ a E I + -r + TT b -a  IG 11 + -I cr     n        2   I    ' V   j/ 

a 

where k is the unit interfacial force per unit lateral deflection; i.e., 

k = ^1 

a       is inversely proportional to the critical wavelength.  Specifically, 

i    - ^ cr    a. 

*  Equations (70) through (72) 
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The displacement and stress fields in the matrix are determined by 
solving a three-dimensional elasticity problem (see Appendix IV.E).  To 
obtain critical wavelength, we then take differentiation of Pjr with 
respect to cvn  (equation 437) after substitution of k (equation 436) 
into equation (103).  The expression for finding the value of ai     is 
given in equation (438). Therefore, the smallest critical buckling load 
can be found from equation (437) with the introduction of critical wave- 
length. 
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PART V - SHORT-FIBER STUDIES 

During the contractual period, exploratory work was performed to estab- 
lish any potential existing in the utilization of short fibers as reinforcing 
material in composites.  Limited experiments were made to determine the 
elastic moduli and strength in compression, and the fatigue behavior of 
unidirectional composite in tension.  The specimens were comprised of con- 
tinuous glass fibers and short boron fibers oriented unidirectionally. 
The results of these exploratory experiments are reported in Appendix V. 

The results of static tests in compression were compared with results 
available from tests made on pure glass fiber and pure boron fiber composite, 
and it has been concluded that the modulus of a composite can be adjusted to 
any level between that of the basic reinforcing constituents merely by vary- 
ing their volumetric relationship at a constant resin content. 

The primary purpose of the fatigue study was to determine whether the 
effect of the end of short boron fibers is one of destroying the matrix 
material and disintegrating the composite.  According to the test results, 
it appears that this might indeed be the case. When comparing short fiber 
boron composite with continuous glass fiber composite and with 7075 aluminum, 
the very limited test results indicate that, although the short boron fiber 
is somewhat better in fatigue behavior than aluminum, it is inferior to 
continuous glass.  However, an additional factor which must be considered is 
that due to the higher modulus, the deflections under load are smaller than 
those of a pure glass fiber composite. 

An analysis of elasticity has not yet been applied to the short fiber 
composite.  However, the experimental results appear to justify a strict 
analytical investigation of this type of material. 
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APPENDIX  I 

PARAMETRIC STUDIES 

ANALYTICAL DISCUSSION 

The following conditions and assumptions" pertain to the computer 
program which was developed to determine the three-dimensional stress, 
strain, and displacement fields in a composite. Also, a discussion and 
listing  of  the  computer  program are  given at  the end  of  this  Appendix. 

It was  assumed  that   the composite consists  of  identical hexagonal 
elements.     Each  element has  a  centrally located  fiber  surrounded by 
resin as  shown  in Figure 62.     Because  of the  symmetry  involved,   the 
following domains  of  the  polar coordinates,   r,  CP,   z,   are  sufficient  to 
determine  the displacement   field   in  the hexagonal element. 

Figure  63.    Typical Hexagonal Element of a Composite 

*These conditions and assumptions  are also presented in Reference 1 
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For the fiber: 

0^ A. « Q. 

0$   <p $ SO 

For the resin: 

0 *   p   *  SO 

(126) 

O * } 
*  Jt 

The distance, b,   is  given in 

(127) 

terms of the  fiber volumetric content, V   : 

*)   =     *■ 
[o.Wfs'yx] V* (128) 

At  the interface,   r  - a,   the displacements,  §.,  and appropriate 
stresses, CT..., were assumed  to be continuous: 

i = 6^-3 (129) 

At the hexagon boundary during shrinkage and axial loading,   the plane 
forming the hexagon column containing BD and  parallel to the z-axis  or 
fiber axis remains a  plane because  it must be  shared by the adjacent 

hexagonal element. 

Relating the hexagonal elements  in Figure 62  to a rectangular coordi- 
nate system    x,  y, and  z,   there is complete symmetry about  the    x = b 
plane.    Therefore,   the  shear stresses must vanish in this  plane so that 

<r_ = o crv„ - o 
I 
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In addition to the vanishing shear,   the normal displacement of BD 
relative to coordinates at  point A must be 

f. 
For the shrinkage case,   e  /b would represent  the  total lateral com- 

posite shrinkage.     For the  loaSed case,   it would represent the  total lateral 
expansion or contraction.     Specifying the normal displacement and  shear 
stresses at the hexagon boundary, however,  has introduced another unknown: 
e   .    An additional equation  is  obtained by considering  that the  total normal 
stress on the hexagon boundary plane    x = b    in Figure 62 has  to balance 
the external side  loading.     Because  these  side loads are zero for  the pres- 
ent  case,  the    normal stress must satisfy the equation 

X X   ^ ^ a§ arx.A   ^v ^   =o 

The conditions for cr  , a , and I on the hexagon boundary must be 
vv XZ X 

satisfied for all values or    y    and    z,   such that 

O  $   <7   $  6   Zaoa.   ^     ,     O £ %  S A >  -   I 
The corresponding values  in cylindrical coordinates become 

A =    >c^<p   ?    o $ <pz   ^ j Og 3 s-I 

The relation between the stresses, a , a , and a , and displacement, 
§ , with reference to rectangular Cartesian coordimtes and the stresses and 
displacements  in polar coordinates are 

^ 

OZ,. = '7 
% 

1 = (130) 

87 

-  i ,  



Pli|i||ifi|. ii. .-i-.m'm-Mv^fjmm ■■»>■■- ■■■■      nm. \t. .mi'm.mmmuMwmmim**Wimßm"-^ ■— "" »  ■""      -     ' 

'. 

■. ........   ..-,'.1.,.^,.--.-v    ■ ,.,    ,:...,,.. ...   ..,,„,   .,   .      I,;,   . _      ,^   . 

The boundary conditions at the ends     z = ±1 of the composite are 

Additionally,   the following shear conditions at the composite ends are 
fulfilled. 

3   J   ^X  (^4>, tJi)Acbvolcp=0 

I II For  the shrinkage case, a.      and    O. are zero,  and the shrinkage 
coefficients ß       and    P11    are not zero.     For the enci  loading case,   ß1 and 

TT T TT 
P'LJ' are  zero and a.1-    and o'.      have constant values.     By superposition of 
the two cases, the total stress  is obtained., 

The materials were assumed  to be  individually isotropic  linear materi- 
al.    The general assumptions  for the classical theory of elasticity were 
used.     From the many possibilities,   the approach toward determining the 
solutions of the Navier equations by potentials connected with  the names of 
Boussinesq,  Papkovich,    and Neuber has been selected.    These general and 
complete solutions by potential  functions  for three-dimensional  problems 
are given below in vector  form to facilitate   the resulting transformation to 
cylindrical  coordinates. 
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§ = r-^^c^f^^; 
72P= - 

^ (> + v) F E:    ~ 

^C= -w^ !?*t (131) 

In cylindrical coordinates,the vector quantities are expressed as 

|    =    5,«,    ■>■  §ZZZ    + §3Z3 

7? *   /t e. + Jßa 

and the operators become 

C      + 
/    ä 

7  =      dA.   S,    ^    A.  ä^   S2 äl g3 '3 

72= d/l2- tl* 94*   r JT*- 

(132) 

When body forces are neglected,   the solutions in terms  of the vector 
components are 

O 

7D        _J     Ü- 

B */? 
§ 

(133) 
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and 

^3 Sj J   =:   M^  Vtctbe 

(134) 

e,  and 
~1        ..   ~2 

Since e^,   and   je. are  functions  of cp,  it is more convenient to relate 
d e0   to the unit vectors e    and e    associated with rectangular 

~x ~y 
coordinates. 

Then,  by substituting  (135)  into the first equation of  (134), 

Since e  ,  e , and e    are independent of position,  then 

(135) 

(136) 

The solution of equations   (136)  and the last of  (134)   can be written 
in terms of the solution to Laplace's equation. 

V*Ll   =0 CO,,,1,3 

where 

90 

(137) 

(138) 
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and  the  second and  third equations  of  (138)  can be solved  for P^ and P„ 
so that P,   (i  * 0,   1,  2,  3)  can be written  in terras  of L.   (i = 0,   1,  2,  3), 

P-  L. C-o-o- •5     Ot^lQ i> 
.<? 

(139) 

The  strains  become 

// 
1 2- r 

zz 

*S3  = 

f, 
^3 

=     e   (   A.  5?» §,   + ,)/). ^2 A.  ^2 j 

(140) 

and the stresses are 

CTj ~ (,**)(l.2i>)   6<j   e   * lf\> 
(141) 

Therefore, from the solution of (137), the Papkovitch functions can be 
determined by (139), then the general displacements by (133), and then the 
strains  and  stresses by  (140)  and   (141)   respectively. 

DISPLACEMENT AND STRESS EQUATIONS 

After deriving  the  general  displacements  and  stresses,   equations   from 
(133)   through   (141),   some of  the  symmetry  and  boundary  conditions were used 
to  reduce  the  equations  to  the   following  form.* 

''«The argument of all the Bessel  functions  is a. r. 
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The displacements  for   the  fiber 
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^/o   ^'-O 
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-f- 

^TiT^T/t1^] ^^J '^^ 

f [^ ^/<+< ^9^—^+i^^ 
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The  stresses  for the  fiber 
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The displacements for the resin 
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The stresses  for the resin 

(144) 
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z 
Vc 1 + 

A! ä ^^ ^^ r7^^^ 
(145) 

• 

Equations   (142)   through  (145)  were then programmed  in order to 
determine  the remaining integration constants and then the displacement, 
strain,  and  stress fields. 
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APPENDIX  II 

THREE-DIMENSIONAL LOAD TRANSFER AMONG FIBERS   IN A MATRIX 

Displacements  which satisfy symmetry  conditions   (I)  can be written 
as: 

-k^fe+xI«]-^[>K^-|lC]lz^ COSTiif 

+ f/?a (3-4P) + Bzl(3-4-dIfA-l]] <{M*<f 

(IA6) 
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;i]^f 
(147) 
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+ 

to 

J     «rö kit)- v /- 

60 

(148) 

where /?^ = /Im (^hu) ~ fl^Tl 

and where In and Kn are modified Bessel functions of the first and 
second kinds and order n with argument ^/t being omitted. 

The first numerical subscript of any coefficient in the above equa- 
tions refers to the term contributed by the corresponding PI (i=l,2,3) 
and the first two subscripts 12 or 21 by Pi and/or P2. The coefficient 
without numerical subscripts refers to the term contributed by Po. 
Therefore the four Papkovich-Neuber functions in cylindrical coordinates 
have to be considered in the present analysis. 
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+&>/ f/?^ i^+B^ KJ ^z+WlW^xXf 

+ 5/?* -B+r
5+^/l3 + B3(V/V + JP^i)   a49) 
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i(Hf) J 

+ 

+ -^0-^)[^fMs^-(-BrB^k).4^(f]  (150) 

CO 

^70 
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^ 

CO    00 f4 

; Jai^^-^-Ä+BlirtOi-w-ntuK*, 

(153) 

.• 

Y f 1 r' T 

00 

+ Z 
^2 C//^I^B^/C)J^f 
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(154) 

Displacements and stresses as given above can be applied to any 
particular domain of the present problem by suitably specifying arbi- 
trary constants. 

To satisfy the periodic condition of matrix and loaded fiber; we 
take In (II-l), (II-2), and (II-3) 

TV-C/A, 12,24-, s      \       *        *        * (155) 

nj* =B^ -n;   =B^   =0     j^4(156) 

Satisfying the loading condition    (JJ, (^^±i)- fff.we choose In 
the expression for     (J~33   (see equation II-9)  the ^    so that CfS/cXsz Ql 
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/$ ä /, 3, i; >e/c. 

= 0 (157) 

I\ «I 

Hence, (158) 

s    ; 1 

leads to 
In addition, the unloaded condition, (JJ^A^ü) ;= £?    of domain II 

X=|j ^rr/^.^^fe. (159) 

.    II 

n1 T?31* AJ1 T>3t       -oTL   _T2l      n 

■5 

.1    ■ ■: .' 

rfCn+Dftm + O-rifa ~ 0 

0-Vx)fl*+aV*tä = 0 

(160) 
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The displacements In domain III do not have any periodic property* 
In the polar angle   «^    , and we discard  the terms contained In the (J^ . 
and   / •   functions  in II-l to II-9 characterized by the factor   sinK<f 
or     coSttif        for domain III. 

Flisiik ~ Bunt — naiTtü ^ &JII#6 r* 0 

r\^- UL y-j^BT TIT 

(161) 

E at 
n4-Ä ^  B^ ^  0 

The vanlahlng of the axial stress requires at the end of domain 
III In equation (II-9) 

/A   ~~~*ij[ fi~ l,3,£, JXC, (162) 

„3t M TIC TL 
fa = B** = B* = B3 = C 

ft+^cmnf+^fi^o  m) 

*A8 far as a hexagonal element as shown in Fig.30  (a)  Is concerned, 
displacements of  the six unloaded fibers possess sixfold symmetry.    How- 
ever, an elasticity solution is not valid for a discontinuous medium. 

Ill 
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APPENDIX III 

DISPLACEMENTS AND STRESSES OF THE MATRIX 

Using equilibrium equations, Ref. 6,strain-displacement relations 
and generalized Hooke's law,the following Is obtained; 

/    3e 
/-5V1 ^^ 

+(vS'~Wt~P'sJ~0 

I    -de. 
-hwsH+Vh = 0 

where V Is the Laplaclan operator defined by 

and where   e    Is  the dilatation satisfying Laplace's equation 

V2<2 = 0 

(164) 

(165) 

(166) 

(167) 

(168) 
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Since (168) has been derived from equilibrium equations (164) 
through (166), we My solve (164), (166), and (168) for radial. 
circumferential, and axial displacements,  | ,   £  and   / 

We seek the solution of (168) in the form 

3* 

6 — ^0^)M^^ Mrvdn^ 

Substituting  (169)   into  (168) yields 

iff. ,_Ld-P 
dp2 ' P dTF F7F    C' + 

P: :)fo = Ö 

where p   -— Ött-^- 

The solution to  (170)    is given by 

where A.  and B-  are arbitrary constants. 

Introduction of  (169)    into  (166)    gives 

(169) 

(170) 

(171) 

(172) 

mm 

(173) 
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, 

The solution of  (173)     Is written as 

■■ 

(174) 

£3 = ^(fiAm^MSOUZ (175) 

From (173)    end  (175), »e obtain an ordinary differential equation 

3 
for        (P» with the solution 

■ 

^(f) = ßjtf) +3z-f2(f)+ß2ll(?) +BzK,Cfln) 

where A- and B. are arbitrary constants and where 

The function    ^{'p)     in (177)  is given by 

in which primes denote differentiation with respect to     |0 
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By the definition of the dilatation Q.   ,  we have 

^f      ^L     JtW^v)    az J (179) 

Substitution of (169), (175) and (179) into (164) leads to 

dp2   f 3P    ?**'    ?fzJ + o£ te* 

(180) 

where 

(.181) 

Assume the solution of (180) in the form 

■■'•'.■■... * 

■» 

Introducing (182) into (180) and changing the variable result In 

(183) 
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whose solution Is 

^~TK^MW+W+W) 
+/?JII^+BJ)((^]      (184' 

■ 

where A» end B ere Integretlon constants and where 

w=«Äf-»Äp ■ 

Substituting  (169),   (175),  and   (182)   Into  (179)  and Integrating 
the result with respect to   ^f    lead to 

(185) 

(186) 

where 

(187) 

I 
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■ 

The function       ^   In  (186)   is an arbitrary   function to be deter- 
mined.    Now that  the       -#2—  plane is  the symmetrical  plane, we have 

^(f'P'*) = 0 
■ 

which requires 

Qc(f,lL)=: 0 (188) 

genera 
Stresses / (T^* , of the matrix are related to strain    £.-     by 
alized Hooke's  law, as  follows: 

(189) 

where    ^i      is the Kronecker delta. «8 

By using displacements   (175),   (182), and  (186)  together with strain- 
displacement relations,  stresses  (189) can be written In the form 

(190) 
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where ^j  «re functions of P only. 

It Is seen from (175), (182), (186) and (190) thnt displacement com- 
ponents | and Jj and stresses (J^ , (J^ » (JJJ i and OJ3  characterized 
by a iictorAifttf  vanish at the ^2—pl-ane (or the neutral plane), are sym- 
metrical with respect to the ^-j plane (or the synmetrlcal plane), and 
have maximum values at the -^z-plane for constant Jl   and Z • The dis- 
placement component ?_ and shearing stresses (J^2 and (J^3 characterized 
by a factor c^S<f are symmetrical with respect to the ^2-plane, vanish at 
the -j^z-plane, and reach their maxima at the ^z-plan- for constant Jt 
and Z • Obviously, these properties satisfy the physical requirements of 
the bending of the matrix in the present analysis. 

The arbitrary constants A, and B. (1-1,2,3) in the expressions for 
displacements and stresses are to be determined by boundary conditions. 
The outer surface of the matrix is assumed to be free from stresses, 
and hence we have 

^(^^2)= (9 4-1,*, 3 (191) 

where f, =oui (192) 

The continuity condition of the interface on the components of 
displacement in the directions of Cartesian coordinates -^ , ^ , and 
Z        requires 

.■ 

„here ft, =  0^ & (194) 
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The condition (l93c) has been obtained by assuming that the angle of 
rotation of a fiber element Is small compared to the unity and that a 
normal cross section of the fiber remains normal during bending. 

Substituting (175), (182), (186), and (190 a, d, e) into conditions 
(191) and (193) yields 

(hCp*)= V, *-l,Z a«) 

The constants A    and B     (i-1,2,3)   in displacements  (175),   (182), 
(186), and stresses   (190)   c«n be determined by solving equations   (195) 
simultaneously.    Each of these constants  is  then characterized by the 
presence of the amplitude   t^    as a factor.    Therefore, stresses at the 
interface can be written as 

(J7a(p4/^2)- Vi§ZoOS(fA^ö(n* (196) 

^ (fit/^ 2-^ = U (I730/a^f (^5 <Vn 2 

where      Tu ,     (JJz » «nd    $15   *re functions of    ")?     ,   0    ,    a,    b,    and 
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A. 

APPENDIX  IV 

ENERGY SOLUTIONS 

ALTERNATIVE WAY TO FIND SMALLEST BUCKLING LOAD AND  BUCKLING 
WAVELENGTH OF FIBER FOR MULTIFIBER CASE 

The  strain energy due to longitudinal shear along the  fiber 
surface can be also  found as   follows: 

ij>^=iH^;^ 

tni&M 
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+ 4- ^ /) (2.o(„4) 
2,   f 

(197) 

C 
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Then the expression for buckling load of the fiber  is 

(198) 

where 

f equation (197) 

Combinations of equations   (197)  and  (198) yields 

j. Z Sink (ädJ)CßAZUo(h4) VX 

(199) 

SMALLEST BUCKLING LOAD AND BUCKLING WAVELENGTH OF THE  FIBER 

The smallest buckling load of the fiber can be obtained by minimizing 
P1    of equation (198) with respect to a    • ^P1 /da    «0 goes. cr n er      n 

122 

      -  :  ■   -        —;_- —MM ^"■■'Jl ■':-    



"■   "-"     ' ' '    "^»'^■pWWWIWWIIIIIIIIIIIiWIIIIIIWWIIiWI m^^^mwmmmmm 

+ 2$ih:h(Jott,J)c*i)
X(j>o(J)Jj* 
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(I-Cak (lot* i)) Sinlr (Mj)l> 
S L 

i ^Tid [i+xfj j z[(Mi)^;j,(io<J)l^.Ji -^jt^u^j)!^'. 
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*? J 

-3.6inl,fj.*hJ) -SoiJ + So(J<Uik(2a(J) 

f^vSjVl, (^J)ccsli2'(^<JI)l 

-4 Sinli (Mjjc&lit&J) +2. ski, U^hJi) 
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• 

(lo^jy 5,K/I r-^^i) - 5/^ W**)      od-^ 
^ -1 

s3 

- -((My.tfH-zJSinfawyp^UW* fc) a 

t. J 

^1 
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4-^-   (hc&l,(J*J))3lHU£*(*4)]' 

(200) 

From equation (200), we find the buckling wavelength £  = 2TT /a. , 

Therefore, the smallest buckling load of the fiber, (P1 ) . , can be 
obtained by substituting I        into equation (199).    r m:Ln 
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B.   BUCKLING OF A SINGLE FIBER IN A FINITE MATRIX UNDER 
AXIAL COMPRESSION 

INTEGRATION CONSTANTS AND LATERAL DEFLECTION 

By applying boundary conditions (111) to equations (83) and (84), 
and solving them, we obtain the results of integration constants 
as follows: 

K~ 
6 

& 

du - SiV/? d^ 

a*t  - Sinh 41 -] 

(201) 

(202) 

(203) 

(204) 

where 

A^^J = ^i(t-^ (205) 

The relationships between displacements and stresses of two-dimensional 
elasticity problems are quoted as 

ST 

E8 

(206) 

(207) 
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Therefore,   the deflection in re-direction is 

v E E^ y 

+ 

t^ ̂L 

•6/K.CO«',,*,) 

■2-5inh <i. 

Etou h\{i + 
^-i 

5IJiA a^ 

dx.^ Sin^dn 
'J^SiJieltt 

+ vS/M-H «i 

«Ä "" Sitth elK 

^rrr-f^^U.^Um 

6;K(^H^) 

I 
(208) 

and the interfacial force per unit length of fiber per unit deflection 
is 

O/w, 
(209) 
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STRAIN ENERGY DUE TO LONGITUDINAL SHEAR AT THE INTERFACE 

The strain energy due to longitudinal shear at the fiber surface 
Is defined as 

u r 

JV i<ea
xM ~i*l(&v (210) 

or 

U-fäffftSfl+^r)^^ iG\ 'O^Ö. [ JtJ 

Integration of equation (211) gives 

(211) 

u d* 
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K 

^s^H^-^siM^ 

f 

_1 

du     \ f SIH^JK ] 

«r iNs^ 7 uP^i 
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(212) 

WirKT.TNG  LOAD OF THE  FIBER 

Total potential energy of the  fiber during loading is defined as 

,    Te = Ub  +Üe f OpfQs-W (213) 

Combination of equations (70), (208), (209), and (212) yields 

■  • 

So 

1 Zj   1    tojH/    0<H   ^ 

if(k)Tm< 
where 

X 

ff-i 

of equation (212) 

(214) 

(215) 

Minimization of total potential energy with respect to |I 
gives critical buckling load of the fiber. 
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pI -- ^EV i $. ^0x Tcr (216) 

where 

Olyy    = L 
(217) 

Substitution of equations  (208),   (209),  and (212)   into (216)  results. 

?:- 
-/ 

SMALLEST BUCKLING LOAD AND BUCKLING WAVELENGTH OF THE FIBgl 

The buckling wavelength of the  fiber   is determined by minimizing    P 

.pi 
with respect to    an  J  i-6-»      cr    = 0 

From equations   (212),   (215),  and  (219), we have 

cr 

(219) 
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'3     r     3    J 
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-fe Sink (Mut)) + AsSinh (<ZotHa\ 
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(220) 
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BUCKLING OF A SINGLE FIBER IN AN  INFINITE MATRIX UNDER 
AXIAL COMPRESSION ~ 

INTERFACIAL FORCE PER UNIT LENGTH  PER  UNIT  LATERAL DEFLECTION,   k 

Now let  us  take  b ^»or the matrix   is   infinite in  size. 
Thus,   it   is more convenient  that  the  solution of differential 
equation (79)  takes the following  form: 

The  stresses  are 

ot„Ä. 
%3=liAlS2ßltl)e*'UßlM* 

*„■>>- 

■T,*,*- 
^-duA. 

+(Cln-2l>J^+J>l^ 
.(*«*: 

'Sin. (oi^st) (222) 

C=-2fA.e^fß/rtMe d*h~ 

'h'H 

+ C«e —^«A 
I* 

(223) 
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ö^JL 

-7.^1 

(224) 

Since when  r -* »    , all stresses have to be finite, then 

and 

ntvL -   O 

ß,* — ^ 

^-7K — f */7r 

-^/K — 0 

(225) 

(226) 

d (227) 

(228) 

Therefore, the displacement in lateral direction is found as follows: 
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or 

^ 
= j^     ^.K^f^^r) 

CX3 
(230) 

Z ^ ^ 5-^ 

^ 
 Trat 

^M=| 

Cxc? 

/-^ 
Y_ o/. (231) 

-^ss 

SMALLEST BUCKLING LOAD AND  BUCKLING WAVELENGTH OF THE  FIBER 

The  expression  for buckling  load of the  fiber  is  derived  as  follows; 

Tcr (232) 

In deriving this equation, the value of k in equation (231) has been 
introduced. 

I 
Again, a    is determined by minimization of P  with respect to 

a11 of  (232);   i.e., 

cx =^ O (233) 

which yields 

(2M) 

Substitution of  (234)   into  (232)  gives the  smallest  buckling  load 
of the  fiber. 
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(P'J.. 

or 

EV^tP") ]^£y 
-r^x ^Eic;-^/ 

+ r    r-J 
-% 

ifiULCJi^Ln FF^F^fi^)](235) 
x^-x,,    * L  iJElThiT)' 3to O-^J 

The corresponding critical wavelength is 

-271 

:236) 

(237) 
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D.       BUCKLING  OF A MULTIFIBER COMPOSITE DUE  TO RESIN SHRINKAGE 

Because of the smallness of the cell diameter compared to the 
length of the fiber, we can make some simplifying assumptions 
such as: 

1. Fiber cross  section deformations due  to stresses  perpen- 
dicular  to  the axis  of symmetry are  neglected. 

2. Cross  sections remain plane after deformation. 

3. The  shape  of  a  cross  section  is maintained after 
deformation. 

4. Cross  sections  orthogonal  to the  axis   of symmetry remain 
orthogonal  to  the deformed axis  of  symmetry  (no defor- 
mation due   to shear). 

Figure  64 shows   the deflected axis  of  symmetry of a   fiber and   its 
associated hexagonal cell  in the z-direction.    An arbitrary point 
P at the nondeflected axis has  the distance    z    from the origin. 
After deformation,   Point P rests at P    with the coordinates §3 
and §^.    Similar  is Q>the  end  position  of    Q    after deflection.   The 
point X is an off-axis point of the elastic medium.     It will be 
at X after deflection.     Because of assumption 4, the  line XP must 
be orthogonal  to the  tangenial line of the deflected  line of 
symmetry at P. 

I 

y 

Figure 64.     Deflection Geometry of a Fiber 

145 



-—- —————— 

The strain of the element X^ W 

&(xj- 
xy_xy_ ^-.(f-^ -Az 

xy Ai 
4s l'   ^ 

or  for the limit Az —5- 0 , 

■^^ = I* ̂(i-fj-/ (238) 

For x = OjWe get the strain of the line element along the axis of 
symmetry 

^'if-' 
(239) 

and therefore  (238), 

p   is  the radius of curvature of the deflected axis at    P. 
Because dCP =   i^L, it  follows  further that 

£,(*) - ^(0) - X -X-^ 
ä£ (240) 

eo(x)   is only a function of x.    Therefore, all fiber elements with 
the distance    x    from the plane normal to the plane  of symmetry 
(in Figure 6'+  the plane  through line PQ normal  to  the paper plane) 
experience the same strain.    The strain in the    x-  and    y- 
direction is caused by transversal contraction.     Quantity    V    is 
the Poisson's ratio of transversal contraction of the material. 
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We get 

(241) 

(242) 

Considering infinitesimal distortion, ive can write  the  strain as 
follows   (putting 63(0)     =    e) : 

D ~  ärf .-y-^(/j»-v^- ) 

V2^    ^  -  -SttOO --<?(£ ~*  ^) 

3* 

(243) 

(244) 

(245) 

By neglecting the shear, We obtain 

T)   ^ P   - D  -^o 
(246) 

The variation of energy is 

r 
T 

5/fl ^—<5 
z(i-t^) j 

+ 

Putting 

^ 

(M £i6 

dir* d% .d*cU , 

f r 

J 
0 A 

(248) 
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and 

sf~ z 
r 

i £> 2|3^) ^x ^y ch 
J 

o   K 

Introducing  (245)  gives 

Jt 

(249) 

^,^ fM(t~^?§■+K^)1)^^ (25o) 

2
   ^        ^   V (451) 

Performing the  integration over    x    and    y , we get 

Z*^] = 4" 

A 

A A -^Z 

A 
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where    A^    and A-    are  the cross-sectional area  of the fiber and 
resin  in  the cell. 

Furthermore, 

A. 
(254) 

/ tZ i* d^ - 1 
T 

(255) 

A 

the areal moments of inertia with respect to the neutral (non- 
strained) plane. 

Because of symmetry 

K dft dy •**■ D 

A. 

(256, 

4 

0 (257) 

then  (250)  and   (251)  become; 

:-'. 
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1    .1 L J 
* j 

(258) 

The equilibrium equation in energy form for a  fiber resin cell will 
be written,  after  introducing   (258)  and   (259),  as  follows: 

(259) 

r? 
IA1, t-V <:zx± s m^T^n £ 

(♦tl r n fa] 

A, A 

/n = i 

(260) 

Due to deflection of the axis of symmetry, the projection of PQ on 
the undeflected axis of symmetry, the length ^5, will be different 
from Az, the original projection of PQ.  The difference A§ - Az means 
the longitudinal change of length. Aw, of the axis element Az. 

AIA/~4^-^-(J^-/M£ 

Taking the  limit    Az -* 0,  then 

^=(,3* ̂
-.M« (261) 
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aecause of (239), 

dl        ds    ^ 
^li   ^2- -   <L±. o^y ^Q-tZJ/^of 

d^ 

and combining the foregoing equation with equation (261) gives 

The total change of length will therefore be 

(262) 

(263) 

We assume that the fiber is restrained to the matrix such that the longi- 
tudinal change of the fiber is equal to the longitudinal change of 
the matrix. Therefore it will be_J" 

^)~f® (264) 

and 

[i+EJ^f-O+m^'0 

The solutions 

of (260) have to satisfy equation (265), 

(265) 

(266) 

(267) 
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We consider the case ¥yl)   = 0 and get the following equations: 

t_ ' J    (268) 

with  the  restraining conditions   (265), 

Z 

The Euler-Lagrange equations of this variational problem with two 
irdependent variables are 

•T5 

where we use  the abbreviations 

BIAT + BrAT 

t^r EV 4 tl 

(269) 

(270) 

(271) 

(272) 

E'A1^ > 0 (273) 

and the parameter \  being the Lagrangian multiplier. Solutions of 
the set of equations (269) and (270) must satisfy (265). 
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From  (265)  we can determine X by  substitution of e  from  (269)   in   (265) 

f 

J, 
n F 

or / 

■} = 
fr-t) J^Y ** - 0+$?■* 

.? r 

J 
c 

'C'\J~3   ^p    tty- 

(274) 

In order to give a physical interpretation of X, we consider the 
resin around the fiber not shrunk (ß11 = 0).  Instead,we apply an 
axial force F^' = F acting at z = -t. Then we have to apply (260) 
with B11 = 0 and 

// 

r. 
(nl 

/H  —( 
/(. 

= S[F [Ci+j^r /]^r 
V 

The variational problem for this case will be 

i 
f ( liTt^jQ/i'tEi f[i*i)^r~F^<k -o 

from which we get the Euler-Lagrange equation of the form  (269), 
(270)    but X  = +F.    The parameter X   therefore represents  the axial 
load of the   fiber which is generated by the resin due  to shrinkage. 
We can assume X to be known and substitute e  in  (270) by e  from  (269) 
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The following differential equation in CP is  obtained; 

(Sf '-h^i^^-k ^)^f-0 
p        T 

After multiplication by dcp, we can integrate (275) at once, ard 
obtain 

ia^~*[i-^)^r + } 2 

4? 
Cm2f  Ä C 

We assume cp    =0    at    cp = cpmax ;     therefore, 

f 
C'+O-V^U* «r 

and  (276): 

f' 

(275) 

(276) 

(277) 

0-|)(-r^J-iM-w/i 
(278) 

(278) can be integrated by quadrature 

% - 

-i! 
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The  integral  in  (2.79)  cannot be expressed by elementary functions, 
Using  the abbreviation 

ä ~ M-fi-JL) > o (280) 

a v V        /• 

A 
^ = ^  > o 2?fl 

(281) 

the  integral  to be determined  is  as   follows: 

^ = 

^r-^Lj-ZH-^U 
f c 

z7 
^ 

+  S (282) 
J [c^f-^rVt-tc^i^ ^t 

with (^5^ /-^/>vv,X        joll<w,. 

2- = 
/ 

^7 f -/ 
V 

f/j^-> jfea^r 

7^ C 
(283) 
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We use  the abbreviation 

r i 
z 

and 

(284) 

f~-7 /^vv\     /^**<Vx Au 

f-X z 

Furthermore, we substitute 

/>VvvX    - 

1 r 

(285) 

dr.AMl 
U'-^ 

(286) 

and get 

?= 
/ 

2|-i 
^1 

('-$)fO-rf)(i+f+rfl 
-f"    (^ (287) 

Now we use  the substitution 

1- UJ 0 -f rj 
l+2cf-   f AAJ 

(288) 
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and get 

? = 
2 ±   -Jr 

2- 

d. UJ 

(/ - u) u;M f 2^ -w ^ t-^O+rj] 

■/■ C,   (289) 

Finally, we  substitute 

(290) 

and get 

£ = 
/ 

[t$('+27 

id 

ifi-j. 

it, 
(291) 

The integral in  (291)   is an elliptic  integral  of the first kind. 
Its inverse   functions are Jacobi's elliptic   functions.    From (291) 
we get 

(Z-c^I.^fi+^j   = 
dS 

!//_ ]p^K$ 

with M^f^mmF (292) 
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«, />wv 17   -JE   /3vu Mm-Mi^f) 
i 

Re-substitution gives 

—   />V^
2

T7   ■= (^  —   /3v^ 

n^^L 

Solving  for /Tvvi ̂  gives 

/>wi 
v   2j^ OT^I ^/^fj 

Z0       f 
or 

z 
t/^ilfe-^x] Z±f_ 

(293) 

(294) 

i+14 _ ^^-^ _>       (295) 

with 

^ -i(f -^(it2t i I -^ ^/. /Ui^*l/y 
(296) 

Because  of 

/-f^    * 

follows   (295) 

%        ~    Ar   Cy^T^f^v 

Vz       -  Jr 

l-i0±*2*~*l 
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Parameter k is   from  (292) 

M = I + RI-^ % IMO* 

/_  2^   ^ / 
(298) 

a. /ivi&k 

We need  the  inverse function of  (297), which we get  from (294) 

n^x - (2-?,^ ^-f Sr-X^t /VK«OC 
(299) 

1.1 |-f (coyf^^j 

At    z = 0, 

Therefore, 

•Kp gives     sn  [   -  CJc 1     =    + 1. max      ö r   •' 

% 

/ 
^^ w 

C' - - K 
(300) 

J ~  f\   /r^sK nj 

K  (k)   is  the complete elliptic  integral of the first kind. 
Therefore  (297), 

/^rvv, :!  _  fay. %* + g -I- <*t •v^f^x 

x-z^t 
■(301) 

z 

ifl-^t 
i^-Mtfey+k\ 

i ( H*«-«t<V 

is a periodic  function in z, with  the  periodicity    z 
w 

z v    =    4 K w 
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or 

t.-^m 
z     is the wavelength    of the waving  fiber under internal stress. 
From  (296X one can see  that  the wavelength    depends  on cp        and X, 

In order to find  the deviation T) of the deflected axis of symmetry 
from the nondeflected axis,  we have to get  the differential 
equation for T] first. 

(302) 

It  is 

ill Since        ~J-T*   ~  '"'   ' \ and using  (239), it  follows: 
_   />-^ J 

ill    -(/+^/^f 

Substituting e  from (269)  yields 

(303) 

7?        \ \   . 

which is the desired differential equation for T). 
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We  obtain  function §.. (z)  by quadrature; 

ft ^ 
1       ? ? Y /h^\ f   ^ (305) 

slnPP    and cos^P are known functions  of    z    according to  (301). 

We are now also able to calculate    ^  according to   (274).     The 
calculation of §i and X depends  on the calculation of the  following 
four definite integrals: 

(306) 

'h - 2 v ..^ J  =    / />w,ur ein, •=   ^ l/y^ J.   w, %   fy (307) 

(308) 

^ J? 

^      Jn "O ' ^ " (309) 
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We have to solve the  following four basic  integrals: 

1 ^vv^X tlyi (310) 

A 

11 1        2.     ' 
(311) 

J. 

and 
A 

2 

cp 

(312) 

(313) 

For that purpose, we have to evaluate cos-r    from  (295).     It is 

US 

l+2&~ f - fAy^jZ-k + ^J 
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Because  of  (292)   and 

dn\7X-hK\ - |- k^/2r^z[2X + k 

follows 

1 
2Xf K 

2^ I A. ***x 

^-- 

'A 

^L ^/vv?[: 2X + \< 
/tn<t^ 

(314) 

All  integrals    J  ,  J„,  JTTT,  JTV can be  found  In a  closed  form. 

It  is 

1- 
l~hf)l/)   /      ^fexj-K)   dir 

t o     l±f-^(^^) 
(315) 

J/ 

wg^i 
i 

vJnr = 
'K 

f 

itilEi 

TtH        r, " (316> 

I      9 

4 s \ 

f^=- ^V«z^)Ja (317) 
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(318) 
We solve   (315)   first; 

o ■ ■ -7 x) 

-^^/T^^-^ (319) 

For the first integral, we substitute 

and get 

K+t-K 

^ 

l-T^^< 

S>n(Krf-H) 

cti 

(j~T&nio~*%)o~^n 
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r](*"(**-*-e);k, -rhf} 

rJ(i;K,~i*rf) (320) 

o 

is the elliptic integral of the third kind. 

The integral (319) therefore is 

(321) 

165 

■i 

■ inimi         ■ ■ • —-^ 



'"' 'Hi' '"ii .HUII«»   —— ——— 

Next,we treat the integral J_-. 

Here we substitute   en ( it z + K ) = t 

with 

^ = -X />w(xs t K) ^ ^'-a + K) ^ 

/^(xs + K) - I - c^2(x^+ K) = /- ^ 

We get 

Cn(n£+K) 

dt 
Jj s~^\lpo^)(>+ty    -££ & + i 

CH (K-iKi) 

~ ~ ^yt 0* 2ef) «w^*- ^/i (*+Kty{rfsr) 
(322) 
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The  third  integral will be solved by using the  transformation 

Jm   ~   7C [1°     «t      J 

4 *b 

f- J j iit^. e]^(l^)M^ 
irtK 

(323) 

Since the rational factor of the elliptic radical is of even power 
in t, we can rewrite (323) to bring into a more common form. 
But first we have to expand (323) into partial fractions. Setting 
for abbreviation 

we get 

-4- = n 
l-h2f 

(324) 

-r   -jfi   Lt±\z f  i4cii 

SnK 

(325) 

Because of 

i1- 
i I- «T   J n< 

* 0- ^n1 J 

I- hH w- -i]-.*!'- l-n%i' 
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follcjws   (325) 

S*i(Kfx£) 

- z di 

SnK 
(h*%i*)yj(,~tyi.W'y 

SHCK+KS) 

+    TT 

In order to evaluate the  last integral, we shall derive a recursion 
formula  for  this kind of elliptic   integral, since all elliptic 
integrals  can be reduced  to the  three basic kinds of elliptic 
Integrals and rational,   logarithmic,  and inverse trigonometric 
functions   in    t    and the elliptic  radical  ifT ,^/  - h^li-\     • 

(326) 
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First we expand   the   polynomial 

(l-^i1-) 

in the power of 

Setting     t      =    §,     then 

^   /   ,\v       ,V (-0  a v    y ^11 edd. / / \ /-L - f ^i 
(I V=0 ^      x        ' 

v/sö 

Hin3-)1     ( '^ n4 

^l-o-v^^-^?^ ^ 

^ 
1..    t. 

ä 

1 

ft ( Ht 2k 

«V/f-nVf/f1] 
^ 

+ -2K-VHYUK^ /j.^f) + ky^ef o2s) 
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We use  the abbreviation 

Ao s:  H 

A, « 

(329) 

(330) 

A 2       n' 
(331) 

to simplify  (328) 

2  2    v 
Dividing   (332) by      y  ( 1 - n  t    )      we get 

(332) 

—#■     * 

0-^ { I fy-^J7j        0-*HTy 

+ A 
(wrp y 

(333) 

We define  the integral 

1~ 
di Ut 

(I- *HJ y       ~  j O-^tr^Myi-k^) 
(334) 

and  integration of  (333)  is  therefore 
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The left-hand  side integral we integrate by part 

/A 9   vjy- i ^^-2 

(335) 

t dt 
(i-^ey    ( 

f ^ 

Evaluating (I-HHJ ^ (336) 

cLt 

. ^^o^nU-^O 
and then  (336) becomes 

= -^ 
t «»r 

f2y[A* 7   ' O-^r     li'-^T'yl 
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. 

■ 
■ 

or 

cLt 
Zs>/K< 

+ Al(2v.,)(,-hi'ix.)   4- 24,~i)A2 0~^rfj 

f dt 

o-*Hry 2vA0 -f Al(2^i)(i-^ix') 

+ 2Cv-0Az0'-*ttT} 

k 

2 

cm) 

Replacing the  left-hand  side of  (335)  by  (337),  we get the  following 
recursion formula: 

[~^~;;A, + 2^-OA.jcr^, - f2^-3)Az Jv-z 

= ^ 
t 

(i-^i^-y 03B) 
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1 ■    -      

Because  of   (329),   (330)  and   (331)   are 

2vA0 -   ^(»V^-HY' + O) 

2(V--I)(A2-A)=    i^dl (3^-^(1^))     (AD 

(339) 

(342) 

From (338)^6 get our integral  in  (326)   immediately by setting v = 1; 

2A'Jz = rfe^ +(A*-AI)JI' ~ A.X 
or 

J2        i^rtM1-) Ao 2 A J   - 2Ä0 Z-l 
(343) 

We have to modify 

into the canonical form. We get 

X 1 

J.,   -   / -i^l *Lt 

1 
+ (l 

cUt 

1 
E(i;*)>0-£)F(i;*]M) 
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E (t, K) is the elliptic integral of the second kind.  Now we know that the 

elliptic integral of the third kind is 

T =   U(tj-n-k) 

therefore, 

I- dt 

lA.O-W)       2A, ^-hr-m-^x) 

-kl^E(t^y(,~^F(i;kl 
From  (329),   (330),  and  (331) 

(345) 

Ao^A( „*~^2£0^ 
n4 + H*'-tn*-(l+k*') 

A0 
„4^ ^'■^»'■(l + K*') 

and   (345),   finally 
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ctt p'l \i(i-nv-^il) 
O-^i^d-nO-k^)   '   2(l-n-i'-)(nU/Ci-n'-(it*x}) 

2( 

I(tn4+.k*~*%(H'k*\\ *  (*/*) 

Finally,we are able to write the solution for JT_T from (326) with 
(396) as follows; II1 

(346) 

Jm =(r^fU+Ikir- n1 &■*'(**■* f)c^t(/<tx i)aLi-i(K*-* 4) 

3>n*+7k,--r2S(n-k%) 

~n( 
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(K'-'H-) 

2%(nV/r1--^ 
 -— l-nl + K   -Kl 

JM --Z^SLt^Jl ^(2^~^) 
4       S„(K*-Ht)orx(K*-Kt>)d*(K-tn£) 

(l-n***^* i-*-*)) 

~±($HU7^~2*%(i+k*))\TJ(*»(***'*)r^*) 

- rTr/;-»]-^|f:(-(K^j;/r)-£(/;^ 
(347) 

We must    now evaluate  (318), which  is  simple  to do. 

We substitute 

with 

and 

so wa get 

,->^ Yr- /) dt 
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X€f i1   +   k-l 

I Ut 
h7- I fj 

o 
fc-'^T/ 

(348) 

After some  transformation,we ^c     for   (3AÜ) 

i3/; -i'/i 

Jn7 
_[^>r[/+vjVj tt 

^ 9c<T2'C'-nt'J    J/T^ I- ih ». • 

or with  (324), 

:r.- 

\[p(H-^)(^2f) 

--k f{f^f) ^^^ (^ c-z-i fK^*«^)) 

CKJ. (K + Tcl) 

(349) 
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After  this rather extensive evaluation of the four Integrals, we are 
now able to give the analytical expression of the deflection coordi- 
nate    "H    of the deflected line of symmetry.    According  to  (305),   (307), 
(309),   (311),   (313), 

=2(1- E
T

2L
)JECZ) t^js-JgC*)        <350) 

We can now express JTT and J_v explicitly by  (322) and   (349) and get 

-   23       £mirTi ——T 1        oiCKf^c?) 

or 

wkW^l*?^-*] 
^({fcfc" (****)) cue 
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(351) 

(351)  represents  the deflection curve.    The periodicity of this  curve 
is the same as  the  periodicity |  z    (as   found  for cp (z)  ),in equation (302), 

We shall introduce the original physical  parameters 

l-h      ■=-      -= Tr^—^  

/ • 
p-«-a 

(352) 

(353) 

(354) 

2&- / ^fp-ze-^) 

1+2CL  = 
P~K~%(2-c*r*<f>^+K) 

p-R~a 

IC -^ \J2FQ  y'p-K-a^TW* 

(355) 

(356) 

(357) 

We have to determine cp       and X.    cp       can be determined from (304) 
and (262): 
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I 

and because of the assumption  ^ *• /O ^ 

*~**    ^1{1^ 
df 

/Uw^ 
n 

/lAM^C 

JH^IZ,  I 6-f 6V-) r. /Ht^x 
^f, 

J 
/VH«^ 

or 

i    ü . ^r; fM.. ^.^ 
/+^ /i 'Vwy ^ /W«l-V 

2 ?-^ '? / 

(358) 

- ^ 0 
T****       ^ *       l+$ 

(359) 

Then, \    is determined by means of (274), (306), (308), (308), (321), 
and (347). 

It is 

*• 

(P-g)[/-|-Jx^]-^P 

(360) 

In  (360),the expressions   (321)  and  (347)  apply.     (360)  is a transcen- 
dental equation in \,  since J-  (4) and J___  (I)  are functions of    X. 
In order to evaluate    ^    numerically,  an iterative method should be 
applied.    In order to do  this, we have to approximate  the functions 
J     (I)    and J        (I),  so that the first value of    X    becomes reason- 
aBly accurate.    But this means  that  (321) and  (347)  must be specially 
Investigated. 
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First of all, we consider that I    is  large, such that 

7C 

K 
* I4H~I 

or 

^     ^/)^^^) y)« OJ (361) 

whera    N    is a  large integer number  (number of waves!). 

Therefore, 

(362) 

where E  is the complete elliptic integral of the second kind 

»4 

£ "  /vJ-feV h*-*»1"^ tf^y (363) 

Similarly, 

»/l 

rK*H(K**i);~*ih/k)* 4N CS/ ^> 

(364) 
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o 
The complete integral of the third kind TT ( - n', k ) can be 
expressed by K (x.k)  and E (x k) as follows: 

(365) 

for    / n / <  / k /, which is  the case in this  problem-   For N^  1, Jj   L8 

(366) 

The integral (347)  is 

-F(f;k)E(lc)]-(lN-l)^E(k)l iUn 

Therefore,   (360) 

A   s.     (368) 
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with 

i-"t-\i- 
2(P W 

(349) 

From  (324)  and  (292)   follows 

!2 Z^- 

Vc-^^x*'--»'1) 7^ 

(370) 

(371) 

l+2f 

f 

(372) 

(373) 

(374) 
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^ 

finiiinii iLiwMM 

(375) 

g    is with  (280) and  (281) 

t - zfr-*) _ , 
A 

It is 'p    7? ^> A ' therefore 

and 

•^H2"^- (J^ 

(376) 

f </ 

k^^ r 
(377) 

(378) 

M 
4t 

Therefore, 

)     w t A ^     (379) 

M H i~ii<
2'-K'l(\~ 

£(kj 
KM 

^ f K' yi (lf*z) 

h4 ^k^-^Cl + k*) 
3 

7 

K^V 7|i ~Ui*kV 

(3ÖÖ) 

KI1-^ ^C-r^A-o 7 
(381) 

W,**)*Hi-fF[£(fit& 
(382) 
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I 

U(*,<(**,)**(ft*ft?)-(?-*)ffFfc(if;v?) 

It Is 

(383) 

00 1. 

with the recursion formula 

(386) 

(387) 

1/T Z 
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For    ^m^fi 8ma11 i8 £ $*) * ^ * - 
and 

Therefore, 
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and for KM LI   cp and small    k 

£(V/fe)-F^}f$=-;Kf (388) 

Therefore, with i-v*f > ^ 

g    can be approximated by 

therefore, (368) with   (389) and  (390) 

*£*&* 

(390) 

2 . ~<**W~*7f (f*~*f*** 
4- 

Setting    \    -   x, we get the following third-order equation: 

s^3^. 

(391) 

(392) 
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For small Cp       ,the  first and third   terms can be  ignored,  and we get 
max 

X1-W- (li+pT) (393) 

as a reasonably good solution for the eigenvalue X. The eigenvalue 
X does not depend (or does not strongly depend) on cp 

max 
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E. BUCKLING OF  FINITE MULTIFIBERF   IN A MATRIX  UNDER AXIAL LOAD. 
THREE-DIMENSIONAL 

k  FOR THE MULTIFIBER REINFORCED COMPOSITE WITH THE  FINITE 
MATRIX TREATED AS  A THREE-DIMENSIONAL CYLINDER 

The displacement  components of the matrix,   in terms of Papkovich 
functions,   in cylindrical coordinates,  are as  follows: 

(394), 

4* = - ^F) Mh(FM34'f ^^+fj 
where P  P,  and P. are harmonic functions such that 

o,  1,     2 

(395)J 

(396) 

^f. - rf, = v% = 0 (397) 

n is a Laplacian operator in cylindrical coordinates; i.e, 

-*_ T 1) 
(398) 
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The six stress components In cylindrical coordinates are; 

+ 

21 

(399) 

v33 

.* 

(Aoir1 

i3 

ä1 

'ife ^S [^f(^Hp.S'H# f f.V, 
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The product  solution form of a harmonic function in cylindrical 
coordinates  is 

(405) J 

In considering the boundary conditions of the present problem, we 
choose the solutions of Papkovich functions as follows: 

^ ** (406) 

f, = [c, I* (*»*-) +2} /4 («i-^J ^ W s/WK^ 

J (408) 

Then 

(409) 

-^si^ + ^ -fq IMtD^M-f,J,^4) 

(410) 
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Substitution of the foregoing equations (406) through (410) into 
equations (394) through (396) yields the following solutions for 
displacements: r 

5, = 4£& jCSHM^IC, If«,*-) +05, K2(***-) 

4'- 

(412) 

^ 

(413) 
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The displacement components  in Cartesian coordinates are 

+ 

where       J^^A)   =- ^      ^     ck 
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(416) 

(417) 

crJ 

4* - i' 
The radial stress a,,  and shear stress a^J are found from equations 
(399), (402), (406),^to 407, ~ 12 

fF,/<cW)] 
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\U 

CJK i? SiV (pC^J (418) 

or 

$ 

CMS$SitiCotn*ii) (419) 

where 

JI = C, IM-) +I)K2M+EI/o<i1^f ^KoC^A) 

H7- C r(o^)fJ)^+EJ^+F;^ 
and 

I'^ C iJ^A) tJ)K;M + ElkAHFKV) 
(420) 
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tf 

^CZ-^J 
fA 

'L    A. 

• sin ^ SitLfod,*:) (421) 

- £ [(/-^;leKi) -Alk ^ 

•C«^Cfi5(^*) (422) 
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Equations   (414)   through   (422)  contain six  constants   (A^,  B,,  C, ,   D, ,   E, , 
and Fi) which must be determined  by boundary conditions.     These conditions 
include  the  continuity  of displacements  and  stresses  at  the  interface  and 
will yield  six  simultaneous  equations with  six unknowns which are hardly 
amenable.     For  simplicity,   it  is   then  assumed   that  the   radius  of the   fiber 
is much smaller than  that  of  the  composite;   the  three coefficients  for 
modified Bessel  functions  of the  second  kind will  be automatically dropped 
because of the   finiteness  of stress  and  displacements  at  the neighborhood 
of the origin. 

The boundary conditions  at  interface r = a to be used are 

1/ = IT ä $*n 
6i* &**>) 

*4 
~ o 64. 

S* OÄ 0 (423) 

Substitution of equation (423) into equations (414), (416), and 
(417) yields 

(424) 
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Solving these equations,  we can obtain the solutions of A.,  C.,  and 
E.   In terms of    ^  . 

The denominator of coefficients A.,  C,,  and E^ is designated as      A   , 
and  is written out  as below. 

■j-i^jfK^+jffat) '      (427) 

The results of the coefficients are 

A/ = ^ k^ ^xL^a>4f^^*^ 

-HfM 
o<n<KJ 

(428) 
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c, = 
A I 

(<*)T(*n*)-2Z&**)lM^J*K*)i 
and (429) 

= ^j^*dJjk**)~2(s~4J*)^ 

+ |     - r !Lu-~x>*) 
ot**^ +<^V) (430) 

The force per unit  length applied by the matrix to the fiber due to 
the normal pressure and circumferential  shear at the interface  is 

fl ÄJ    (öfc^ ^'«m^A^j 
1/^=-^ 

(431) 

By substitution of equations (419)  and  (421)  into (431),  and  the 
identities of definite integrals 

jW-Ht^ J - ^P (432) 

and 

J c^^ = | + ^ / 
we then have 

f. cxCq- 

tC( [f(&^V^/-a)^^(V,<; 
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(433) 

Since it was assumed that the fiber buckles on x-z plane, then 

(A 34) 

^D 

Combination of equations (433), (434), (414) and (425) through (427) 
gives the unit interfacial force per unit lateral deflection, k, due 
to surface normal force and circumferential shear, and is resulted as 
below: 

*> 

(435) 
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BUCKLING  LOAD OF THE  FIBER 

Combination of equations  (72)  and  (435)  yields 

?. 
x 

cr 

where    A    is defined   in equation  (427), 
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SMALLEST BUCKLING LOAD AND BUCKLING WAVELENGTH OF THE FIBER 

Minimization of P  with respect to a .i.e., BP  =0 (437), gives 
er n        cr        ' 

•ÄM«)xM 

TTE1    f 

-[.2(3 -t-J*)*,^ io/J ^jl/^a)!, V««; 

'1,(^)1 
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0 
(438) 

This equation determines the critical buckling wavelength of the 
fiber, lcr =    2n/ai.    After substituting the obtained value of ttj 
into equation (436), we then get the smallest critical buckling 
load of the fiber, (P1 ) ,„ cr mm. 
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APPENDIX V 

EXPERIMENTAL  INVESTIGATION  OF  SHORT  BORON FIBER COMPOSITES 

1.       MODULUS TESTS 

The  specimens consisted of a   laminate comprised of 8-ply S-glass 
Scotchply tape   (50% by weight),   seven interspersed layers of approxi- 
mately 2-inch-long boron fibers   (23%)  by weight),  and  epoxy Epon 
828/1031 resin  (27% by weight). 

The  specimens were  tested  in compression and resulted in values 
summarized  in Table IIL For comparison,  reported values of pure S-glass 
tape and  pure unidirectional boron composite are listed  in the  same 
table. 

TABLE III 

COMPARISON OF SHORT  BORON FIBER COMPOSITES* 

IN AXIAL COMPRESSION 

Load Application 
Short-Fiber 
Composite S-Glass** Boron*** 

Max strength,  psi 

Max modulus,   10    psi 

133,000 

13.7 

120,000 

8.9 

220,000 

38.0 

* Unidirectional 
** Minnesota Mining & Manufacturing information 

*** From Air Force sponsored boron work at Narmco 

In comparing the short-fiber specimen with pure glass and pure 
boron composites, it can be said that the values follow a generally 
logical  pattern,which is obvious  in the graphical presentation.   Figure 65. 
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Based on this diagram,   it appears  that approximately 507. short 
boron  fibers and 507= glass   fibers will provide the desired 20 x 10    psi 
modulus combined with a high compressive and  flexural strength.     In 
comparing these projected values with high-strength aluminum,   there 
appears to be noticeable  improvement of material properties as 
summarized in Table IV. 

TABLE  IV 

MATERIAL EFFICIENCIES 

Material Density 
lb/in.5 

Compressive 
Yield 

Strength, 
103 psl 

Compressive 
Modulus, 
106 pal 

Specific 
Strength, 
106 psi 

Specific 
Modulus, 
106 psi 

Al  7075-T6 

Short Boron* 
Composite 

0.101 

0.074 

65 

160 

10.5 

20,0 

0 64 

2.16 

104 

270 

Improvement 27% 146% 90% 238% 160% 

* Estimated, based on Figure 65. 

The relative improvement expressed in percent is exceptional and 
would justify additional research,  even if it resulted  In somewhat lower 
structural improvement than indicated by the preliminary test results. 

2.     FATIGUE TESTS 

The fatigue test data of a short boron fiber composite were com- 
pared with fatigue data of 7075-T6 aluminum (MIL-HDBK 5)  and a composite 
which was fabricated with a Scotchply 1002 resin and unidirectional 
S-glass   (FPL Tech.   Rep.  AFML 7R-64-403 October 1964). 

The properties utilized  for these materials are presented in the 
following table. 
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TABLE V 

MATERIAL PROPERTIES 

■ 

Material Density 
#/cu.in. 

Ultimate Tensile 
Strength, psi 

Modulus 
106 psi 

Aluminum 7075-T6 

S-glass & Scotchply 

S-glass & short boron 

0.101 

0.069 

0.079 

80,000 

160,000 

180,000 

10.3 

6.1 

17.2 

Two panels were  fabricated with unidirectional short boron  fibers 
and unidirectional S-glass   (single-end roving).    The physical and 
mechanical properties are given in the following table. 

TABLE VI 

PROPERTIES  OF TESTED PANELS 

Panel No. Specific 
Gravity 

Boron 
Content 
Vol.7o 

Ultimate Tensile 
Strength,  psi 

Tensile 
Modulus, psi 

935 

936 

2.11 

2.26 

11.4 

17.1 

180,000 

180,000 17.2 x 106 

The fatigue data  for each of the above panels is shown in the 
following table. 
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TABLE VII 

FATIGUE TEST DATA 

Panel No. 
Mean Stress 
% of Ultimate 

Alternating Stress 
% of Ultimate 

Cycles to 
Failure 

935 30 ±23 5.2 x 103 

935 30 ±15 1.53 x 105 

935 30 ±10 6* 
8.65 x 10 

936 50 ±10 1.03 x 105 

936 50 ±8 2.63 x 105 

936 50 ±5 6.1 x 106* 

f 

The fatigue data are also presented in Figures 66 through 69.  Figure 
66 is a modified Goodman diagram for the fatigue life of the short boron 
fiber panels, No. 935 and No. 936.  The curves are estimates based on the 
data of Table IV and previous experience with other boron glass composites. 
Figure 67 presents S-N curves for the aluminum 7075-T6, S-glass and Scotch- 
ply, and the short boron and S-glass.  The curves are plotted as a function 
of the alternating stress (% of ultimate) and cycles to failure for various 
mean stresses.  Figure 68 is a comparison of the aluminum, S-glass and 
Scotchply, and short boron and S-glass at 0 mean stress plotted as a function 
of actual alternating stress and number of cycles to failure.  Figure 69 is 
a comparison of the aluminum, S-glass and Scotchply, and short boron and 
S-glass at 0 mean stress plotted as a function of number of cycles to 
failure and the specific alternating stress.  The specific alternating 
stress is obtained by the ratio of the alternating stress to the density 
of the material. 

* Specimen did not fail, 
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